6. **Literatur**

Influence of beta-adrenergic stimulation on glycosylation of a major, secretory
N-linked glycoprotein from rat parotid salivary gland. Arch Oral Biol 35: 201–
207.

Whole-saliva secretion rates in old and young healthy subjects. J Dent Res 63:
1147–1148.

De la vaccination contre les états typhoides par la voie buccale. Ann Inst Pas-

Salivary secretion rate, buffer capacity, and pH. In: Tenovuo JO (Hrsg):
Human saliva: Clinical chemistry and microbiology 1: CRC Press, Inc, Boca
Raton, Flo, USA.

Salivary IgA responses to Porphyromonas gingivalis in the cynomolgus mon-

Structure, synthesis and external transfer of mucosal immunoglobulins. Ann

Mucosal and glandular distribution of immunoglobulin components: differen-
tial localization of free and bound SC in secretory epithelial cells. J Immunol
112: 1553–1559.
 The oral secretory immune system with special emphasis on its relation to

 Role of J-chain and secretory component in receptor-mediated glandular and

 Role of immune system – dangers of a nonholistic approach in explaining
health and disease. In: Guggenheim B. (Hrsg.): Periodontology Today, pro-
ceedings of the Conference "Periodontology Today" held in Zürich, May 6 – 8,
1988, on the occasion of the 20th anniversary of the Foundation of the Euro-
208.

 Overview of the mucosal immune system. Curr. Top. Microbiol Immunol 146:
13–25.

 Salvary glands and the mucosal immune system. Eur J Oral Science 103: 21–
22.

 Determination of immunoglobulin A in saliva by immunobead enzyme-linked
immunosorbent assay: comparison with single radial immunodiffusion. J Clin

 Iron-binding proteins in milk and resistance to Escherichia coli infection in
26. **Busscher HJ, Weerkamp AH (1987).**

27. **Butler JE, Peterman JH, Joshi KS, Satam M, Challacombe SJ (1990).**

28. **Camling E, Kohler B (1987).**

29. **Carlen A, Olsson J (1995).**

30. **Carlsson J (1989).**

31. **Carlsson J (1989).**

32. **Challacombe SJ, Lehner T (1973).**

33. **Challacombe SJ, Lehner T (1979).**
 Salivary antibody responses in Rhesus monkeys immunized with *Streptococcus mutans* by the oral submucosal or subcutaneous routes. *Arch Oral Biol* **24**: 917–925.

34. **Chang HS, Walsh LJ, Freer TJ (1999).**

IgA antibody producing cells in peripheral blood after antigen ingestions: Evidence for a common mucosal immune system in humans. Proc Natl Acad Sci USA 84: 2449–2453.

44. **Dawes C (1969).**

45. **Delacroix DL, Rambaud JC, Vaerman JP (1982).**

46. **Demuth DR, Golub EE, Malamud D (1990).**

47. **Dimitriou LS, Doherty M (2002).**

48. **Doyle RJ, Nesbitt WE, Taylor KG (1982).**

49. **Dreizen SB, Handler S, Levy BM (1976).**

50. **Dudgeon DJ, Berg J (2002).**

51. **Dzik JL, Gibbons RJ, Childs WC, Socransky SS (1989).**

52. **Ehrlich P (1891).**

58. Ewe, K (1987)

61. **Fukuizumi TI, Tsuisawa T, Uchiyama C (1997).**
 Tonsillar application of killed Streptococcus mutans induces specific antibodies in rabbit saliva and blood plasma without inducing a cross-reacting antibody to human cardiac muscle. *Infect Immun* 65: 4558–4563.

62. **Fukuizumi TI, Tsuisawa T, Uchiyama C (1999).**

63. **Fukuizumi TI, Tsuisawa T, Uchiyama C (2000).**
 Streptococcus sobrinus antigens that react to salivary antibodies induced by tonsillar application of formalin-killed Streptococcus sobrinus in rabbits. *Infect Immun* 68: 725–731.

64. **Gemmel E, Seymour GJ (1992).**

65. **Genco RJ, Slots J (1984).**

66. **Ghetie VW, Scott D, Uhr JW, Vitetta ES (1992).**

67. **Gibbons RJ (1975).**

68. **Gibbons RJ (1989).**

69. **Gibbons RJ, Hay DI (1986).**
 Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors. *Infect Immun* 52: 555–561.
Human salivary acidic proline-rich proteins and statherin promote the attach-
ment of Actinomyces viscosus LY 7 to apatitic surfaces. Infection & Immunity

Adsorbed salivary acidic proline-rich proteins contribute to the adhesion of

Contribution of stereochemical interactions in the adhesion of Streptococcus

73. Gibbons RJ, Qureshi JV (1979).
Inhibition of adsorption of Streptococcus mutans strains to saliva-treated

Delineation of a segment of adsorbed salivary acidic proline-rich proteins
which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect

Hormonal regulation of the secretory IgA system: estradiol-and progesterone-
induced changes in sIgA in parotid saliva along the menstrual cycle. Am

Antimicrobial systems of human whole saliva in relation to dental caries,
cariogenic bacteria, and gingival inflammation in young adults. Acta Odonto
Scan 46: 67–74.

Histologic characteristics associated with bleeding after probing and visual
Protective secretory immunoglobulin A antibodies in humans following oral

Experimentelle Untersuchung zum Verhalten sekretorischer Antikörper nach
oraler Immunisierung. *Zahnmed Diss, Berlin*.

Total IgA and Porphyromonas gingivalis-reactive IgA in the saliva of patients

Secretions and IgA levels of glandwise collected saliva in rapidly progressive

Mucosal immunization with a bacterial protein antigen genetically coupled to

Comparison of an adherence domain and a structural region of Streptococcus
mutans antigen I/II in protective immunity against dental caries in rats after

Current status of a mucosal vaccine against dental caries. *Oral Microbiol

Affinity and specificity of the interactions between Streptococcus mutans anti-

Autoimmun thyroiditis and primary Sjorgen’s syndrome: clinical and labora-

Concentrations of thiocyanate, hypothiocyanate, 'free' and 'total' lysozyme, lactoferrin and secretory IgA in resting and stimulated whole saliva of children aged 12–14 years and the relationship with plaque accumulation and gingivitis. J Periodontal Res 28: 130–136.

Karies und Parodontopathien. Thieme Verlag, Stuttgart.

114. Lashley KS (1916).

 Local oral immunization with synthetic peptides induces a dual mucosal IgG and salivary IgA antibody response and prevents colonization of Streptococcus mutans. Immunology 67: 419–424.

125. Liljemark WF (1975).

Dental caries: A treatable infection. The University of Michigan School of Dentistry, Thomas, Springfield Ill..

132. Lonnerdal B (1985)

Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95,000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. Biol Chem 268: 19143–19151.

Effective immunity to dental caries: protection of gnotobiotic rats by local
immunization with Streptococcus mutans. Immunol 114: 300–305.

Host defense mechanisms at mucosal surfaces. Annu Rev Microbiol 35: 477–
496.

IgA production without mu or delta chain expression in developing B cells. Nat

143. McPherson AJ, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel
RM (2000).
A primitive T cell-independent mechanism of intestinal mucosal IgA response

The common mucosal immune system and current strategies for induction of

Immunglobulin A (IgA): Molecular and cellular interactions involved in IgA

Selective induction of an immune response in human external secretions by

Concept of the local and common mucosal immune response. Adv Exp Med
 IgA subclasses. *Monogr Allergy* 19: 277–301.

 Effective immunity to dental caries: Passive transfer to rats of antibodies to

 Ingestion of Streptococcus mutans induces secretory immunoglobulin A and

 Gingival sulcus bleeding – a leading symptom in initial gingivitis. *Helv Odonto-
 tol Acta (Switzerland)* 15: 107–113.

 Die Biochemie der menschlichen Speicheldrüsensekrete. *Arch Oto-rhino-

 Mucosal model of immunization against human immunodeficiency virus type 1

 Salivary IgA-response to bacteria in dental plaque as related to periodontal and

 Retrograde access of antigens to the minor salivary glands in the monkey

171. Pickerill HP (1919).

175. Rateitschak KH, Rengers HH, Mühlemann HR (1984)
Parodontologie. Thieme, Stuttgart. 3. Auflage.
Immunological studies of young adults with severe periodontitis. 1. Medical

In vitro comparison of biologic activities of monoclonal monomeric IgA,
polymeric IgA, and secretory IgA. J Immunol 160: 1219–23.

Initial colonization of teeth in monkeys as related to diet. Infect Immun 14:
1022–1027.

The effect of brushing with a toothpaste containing amylglucosidase and glu-

Antimicrobial proteins in human unstimulated whole saliva in relation to each
other, and to measures of health status, dental plaque accumulation and compos-

Pharmacol 45: 83–86.

Secretory immunity in defense against cariogenic mutans streptococci. Caries

194. **Shaw JH (1954).**

195. **Sheinfeld JS, Cordon CC, Rogatko A, Fair WR (1989).**

196. **Simpson WO, Sarasohn C, Morrison JC, Beachey EH (1980).**

Characteristics of the binding of streptococcal lipoteichoic acid to human oral epithelial cells. *Infect Dis* **141**: 457–462.

197. **Skavril FM (1974).**

198. **Smith DJ, Barnes LA, Trantolo D, Wise DL, Taubman MA (2001).**

199. **Smith DJ, Taubman MA, Ebersole JL (1980).**

200. **Smith DJ, Taubman MA, Ebersole JL (1982).**

201. **Smith DJ, Taubman MA (1990).**

202. **Staat RP, Peyton JC (1984).**

 Mechanism of neutralization of influenza virus by secretory IgA is different from that of monomeric IgA or IgG. J Exp Med 161: 198–209.

221. Thylstrup AF (1986).
Textbook of Cariology. Munksgaad, Kopenhagen.

Physiology and pharmacology of lacrymal and salivary secretions. Rev Prat 51: 133–139.

Reduced plaque formation by the chlormethyl analogue of vitamin C. J Periodontol 41: 41–43.

Inhibition of bacterial adherence by secretory immunoglobulin A. Science 177: 697–699.
Agglutination of E. coli by secretory IgA – A result of interaction between bacterial mannose specific adhesins and immunoglobulin carbohydrate. Monogr Allergy 24: 307–309.

