6 REFERENCES

Aarons EJ, Beddows S, Willingham T, Wu L, and Koup, RA. Adaptation to blockade of human immunodeficiency virus type 1 entry imposed by the anti-CCR5 monoclonal antibody 2D7 2001 Virology 287, 382-390


Berridge M.J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. 1983 Biochem J 212, 849-858

Bhowmick N, Huang J, Puett D, Isaacs NW, Lapthorn AJ. Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modeling. 1996 Mol Endocrinol. 10, 1147-59


Braun T, Schofield PR, Sprengel R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. 1991 EMBO J. 10, 1885-90

Camacho P, Gordon D, Chiefari E, Yong S, DeJong S, Pitale S, Russo D, Filetti S. A Phe 486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that was causing hyperthyroidism. 2000 Thyroid 10, 1009-1012


Chazenbalk GD, McLachlan SM, Chen CR, Rapoport B. Insight into thyrotropin receptor cleavage by engineering the single polypeptide chain luteinizing hormone receptor into a cleaving, two subunit receptor. 2001 Eur J Biochem. 268, 2261-9

(a) Chen CR, Chazenbalk GD, McLachlan SM, Rapoport B. Evidence that the C terminus of the A subunit suppresses thyrotropin receptor constitutive activity. 2003 Endocrinology. 144, 3821-7

(b) Chen CR, Chazenbalk GD, McLachlan SM, Rapoport B. Targeted restoration of cleavage in a noncleaving thyrotropin receptor demonstrates that cleavage is insufficient to enhance ligand-independent activity. 2003 Endocrinology 144, 1324-30

Chen CR, Chazenbalk GD, Wawrowsky KA, McLachlan SM, Rapoport B. Evidence that human thyroid cells express uncleaved, single-chain thyrotropin receptors on their surface. 2006 Endocrinology. 147, 3107-13


Costagliola S, Urizar E, Mendive F, Vassart G. Specificity and promiscuity of gonadotropin receptors. 2005 Reproduction 130, 275-81


Dufau ML. The luteinizing hormone receptor. 1998 Annu Rev Physiol. 60, 461-96


(a) Fan QR, Hendrickson WA Structure of human follicle-stimulating hormone in complex with its receptor. 2005 Nature 433, 203-4
Fan QR, Hendrickson WA, Assembly and structural characterization of an authentic complex between human follicle stimulating hormone and a hormone-binding ectodomain of its receptor. 2007 Mol Cell Endocrinol. 260-262, 73-82


(a) Fernandez LM, Puett D. Lys583 in the third extracellular loop of the lutropin/choriogonadotropin receptor is critical for signaling. 1996 J Biol Chem 271, 925-930
(b) Fernandez LM, Puett D. Additions and Corrections to Lys583 in the third extracellular loop of the lutropin/choriogonadotropin receptor is critical for signaling. 1996 J Biol Chem 271, 13925B-13926


Fuhrer D, Holzapfel HP, Wonerow P, Scherbaum WA, Paschke R, Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules. 1997 J Clin Endocrinol Metab. 82, 3885-91

Gilchrist RL, Ryu KS, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. 1996 J Biol Chem 271, 19283-19287


Graves PN, Vlase H, Bobovnikova Y, Davies TF. Multimeric complex formation by the thyrotropin receptor in solubilized thyroid membranes. 1996 Endocrinology 137, 3915-20

Gromoll J, Schulz A, Borta H, Gudermann T, Teerds KJ, Greschniok A, Nieschlag E, Seif FJ. Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism. 2002 Eur J Endocrinol. 147, 597-608


Hearn MT, Gomme PT. Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. 2000 J Mol Recognit. 13, 223-78

Herold CL, Qi AD, Harden TK, Nicholas RA. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop. 2004 J Biol Chem. 279, 11456-64

Ho SC, Van Sande J, Lefort A, Vassart G, Costagliola S. Effects of mutations involving the highly conserved S281HCC motif in the extracellular domain of the thyrotropin (TSH) receptor on TSH binding and constitutive activity. 2001 Endocrinology 142, 2760-2767

Hong S, Ji I, Ji TH. The alpha-subunit of human choriogonadotropin interacts with the exodomain of the luteinizing hormone/choriogonadotropin receptor. 1999 Endocrinology 140, 2486-93


http://www.uni-leipzig.de/innere/TSH

http://www.jmol.org

http://www.php.net

http://www.mysql.com

Huang JD. Identification of two amino acid residues on the extracellular domain of the lutropin/choriogonadotropin receptor important in signaling. 1995 J Biol Chem 270, 30023-8


Ji I, Ji TH. Differential roles of exoloop 1 of the human follicle-stimulating hormone receptor in hormone binding and receptor activation. 1995 J Biol Chem 270, 15970-15973

Ji I, Lee C, Song Y, Conn PM, Ji TH. Cis- and trans-activation of hormone receptors: the LH receptor. 2002 Mol Endocrinol 16, 1299-308

Ji I, Lee C, Jeoung M, Koo Y, Sievert GA, Ji TH. Trans-activation of mutant follicle-stimulating hormone receptors selectively generates only one of two hormone signals. 2004 Mol Endocrinol 18, 968-78

Kajava AV, Kobe B. Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information. 2002 Protein Sci 11, 1082-90


Kosugi S, Ban T, Akamizu T, Kohn LD. Role of cysteine residues in the extracellular domain and exoplasmic loops of the transmembrane domain of the TSH receptor: effect of mutation to serine on TSH receptor activity and response to thyroid stimulating autoantibodies.1992 Biochem Biophys Res Commun. 189, 1754-62

Kosugi S, Ban T, Akamizu T, Kohn LD. Site-directed mutagenesis of a portion of the extracellular domain of the rat thyrotropin receptor important in autoimmune thyroid disease and nonhomologous with gonadotropin receptors. Relationship of functional and immunogenic domains. 1991 J Biol Chem. 266, 19413-8

(a) Kosugi S, Sugawa H, Mori T. TSH receptor and LH receptor. 1996 Endocr J. 43, 595-604
(b) Kosugi S, Mori T. Cysteine-699, a possible palmitoylation site of the thyrotropin receptor, is not crucial for cAMP or phosphoinositide signaling but is necessary for full surface expression. 1996 Biochem Biophys Res Commun 221, 636-40


Kristiansen K. Molecular mechanisms of ligand binding, signalling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. 2004 Pharmacol Ther. 103, 21-80


Li S, Liu X, Min L, Ascoli M. Mutations of the second extracellular loop of the human lutropin receptor emphasize the importance of receptor activation and de-emphasize the importance of receptor phosphorylation in agonist-induced internalization. 2001 J Biol Chem 276, 7968-7973


Liu S, Fan S, Sun Z. Structural and functional characterization of the human CCR5 receptor in complex with HIV gp120 envelope glycoprotein and CD4 receptor by molecular modeling studies 2003 J. Mol. Model. (Online) 9, 329-36


McLachlan SM, Nagayama Y, Rapoport B. Insight into Graves' hyperthyroidism from animal models. 2005 Endocr. Rev. 26, 800-32


Moyle WR, Xing Y, Lin W, Cao D, Myers RV, Kerrigan JE, Bernard MP, Model of glycoprotein hormone receptor ligand binding and signaling, J Biol Chem. 2004 279, 44442-59


Nagayama Y, Rapoport B. Role of the carboxyl-terminal half of the extracellular domain of the human thyrotropin receptor in signal transduction. 1992 Endocrinology 131, 548-52

Nakabayashi K, Kudo M, Kobilka B, Hsueh AJ. Activation of the luteinizing hormone receptor following substitution of Ser-277 with selective hydrophobic residues in the ectodomain hinge region. 2000 J Biol Chem 275, 30264-30271


Nechamen CA, Dias JA. Human follicle stimulating hormone receptor trafficking and hormone binding sites in the amino terminus. 2000 Mol Cell Endocrinol. 166, 101-10

Neumann S, Krause G, Chey S, Paschke R. A free carboxylate oxygen in the side chain of position 674 in transmembrane domain 7 is necessary for TSH receptor activation. 2001 Mol Endocrinol. 15, 1294-305
(a) Neumann S, Claus M, Paschke R. Interactions between the extracellular domain and the extracellular loops as well as the 6th transmembrane domain are necessary for TSH receptor activation. 2005 Eur J Endocrinol. 152, 625-34

(b) Neumann S, Krause G, Claus M, Paschke R. Structural determinants for G protein activation and selectivity in the second intracellular loop of the thyrotropin receptor. 2005 Endocrinology 146, 477-85


Parma J, Van Sande J, Swillens S, Tonacchera M, Dumont J, Vassart G. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades. 1995 Mol Endocrinol 9, 725-733

Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. 1998 Endocr Rev. 19, 673-716


Ryu KS, Gilchrist RL, Ji I, Kim SJ, Ji TH. Exoloop 3 of the luteinizing hormone/choriogonadotropin receptor. Lys583 is essential and irreplaceable for human choriogonadotropin (hCG)-dependent receptor activation but not for high affinity hCG binding. 1996 J Biol Chem 271, 7301-7304

(a) Ryu KS, Lee H, Kim S, Beauchamp J, Tung CS, Isaacs NW, Ji I, Ji TH. Modulation of high affinity hormone binding. Human choriogonadotropin binding to the exodomain of the receptor is influenced by exoloop 2 of the receptor. 1998 J Biol Chem 273, 6285-6291

(b) Ryu KS, Gilchrist RL, Tung CS, Ji I, Ji TH. High affinity hormone binding to the extracellular N-terminal exodomain of the follicle-stimulating hormone receptor is critically modulated by exoloop 3. 1998 J Biol Chem 273, 28953-28958

120

Schapira M, Totrov M, Abagyan R. Prediction of the binding energy for small molecules, peptides and proteins. 1999 J Mol Recognit. 12, 177-90


Seong JY, Wang L, Oh DY, Yun O, Maiti K, Li JH, Soh JM, Choi HS, Kim K, Vaudry H, Kwon HB. Ala/Thr(201) in extracellular loop 2 and Leu/Phe(290) in transmembrane domain 6 of type 1 frog gonadotropin-releasing hormone receptor confer differential ligand sensitivity and signal transduction. 2003 Endocrinology 144, 454-66


Skelton NJ, Quan C, Reilly D, Lowman H. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. 1999 Structure Fold Des 7, 157-68


(a) Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, Hsueh AJ. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. 2003 J Biol Chem. 278, 7855-62


Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. 2002 Physiol Rev. 82, 473-502


Tao YX, Johnson NB, Segaloff DL. Constitutive and agonist-dependent self-association of the cell surface human lutein receptor. 2004 J Biol Chem. 279, 5904-14

ter Laak AM, Kuhne R Bacteriorhodopsin in a periodic boundary water-vacuum-water box as an example towards stable molecular dynamics simulations of G-protein coupled receptors. 1999 Receptors Channels 6, 295-308

Themmen APN, Huhtaniemi IT. Mutations of Gonadotropin and Gonadotropin Receptors: Elucidating the Physiology and Pathophysiology of Pituitary-Gonadal Function. 2000 Endocr Rev. 21, 551-83


Van Sande J, Dequanter D, Lothaire P, Massart C, Dumont JE, Erneux C. Thyrotropin stimulates the generation of inositol 1,4,5-trisphosphate in human thyroid cells. 2006 J Clin Endocrinol Metab. 91, 1099-107


b) Vassart G, Costagliola S. A physiological role for the posttranslational cleavage of the thyrotropin receptor? 2004 Endocrinology 145, 1-3


Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. 2002 Mol Endocrinol. 16, 736-46


Wonerow P, Chey S, Fuhrer D, Holzapfel HP, Paschke R. Functional characterization of five constitutively activating thyrotrophin receptor mutations. 2000 Clin Endocrinol (Oxf) 53, 461-468

Woodmansee WW, Haugen BR. Uses for recombinant human TSH in patients with thyroid cancer and nodular goiter. 2004 Clin. Endocrinol (Oxf) 61, 163-173


Zeng H, Phang T, Song YS, Ji I, Ji TH. The role of the hinge region of the luteinizing hormone receptor in hormone interaction and signal generation. 2001 J Biol Chem 276, 3451-8

Zhang ML, Sugawa H, Kosugi S, Mori T.Constitutive activation of the thyrotropin receptor by deletion of a portion of the extracellular domain. 1995 Biochem Biophys Res Commun 211, 205-210

Zhang R, Buczko E, Dufau ML. Requirement of cysteine residues in exons 1-6 of the extracellular domain of the luteinizing hormone receptor for gonadotropin binding. 1996 J Biol Chem. 271, 5755-60

Zhang M, Mizrachi D, Fanelli F, Segaloff DL. The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. 2005 J Biol Chem. 280, 26169-76

Zeng H, Ji I, Ji TH. Lys91 and His90 of the alpha-subunit are crucial for receptor binding and hormone action of follicle-stimulating hormone (FSH) and play hormone-specific roles in FSH and human chorionic gonadotropin. 1995 Endocrinology 136, 2948-53

Zoffmann S, Chollet A, Galzi JL. Identification of the extracellular loop 2 as the point of interaction between the N terminus of the chemokine MIP-1alpha and its CCR1 receptor. 2002 Mol Pharmacol. 62, 729-36