Posttraumatische Veränderungen nach experimenteller kortikaler Kontusion und deren Bedeutung für Therapiestudien
Charité Centrum für Neurologie, Neurochirurgie und Psychiatrie
Klinik für Neurochirurgie
mit Arbeitsbereich Pädiatrische Neurochirurgie
Direktor der Klinik für Neurochirurgie: Prof. Dr. Dr. h.c. mult. M. Brock
Leiter des Arbeitsbereiches PD Dr. med. H. Haberl

Habilitationsschrift

Posttraumatische Veränderungen nach experimenteller kortikaler Kontusion und deren Bedeutung für Therapiestudien

Zur Erlangung der Venia legendi für das Fach Neurochirurgie

vorgelegt dem Fakultätsrat der Medizinischen Fakultät Charité
Universitätsmedizin Berlin

Von
Herrn Dr. Ulrich-Wilhelm Nikolaus Thomale
geboren am 12.12.1970 in Braunschweig

Eingereicht am: 14.11.2006

Dekan: Prof. Dr. Martin Paul
1. Gutachter: Prof. Dr. Wolf-Peter Sollmann
2. Gutachter: Prof. Dr. Gabriele Schackert
Meiner Frau und
den Töchtern gewidmet
Inhaltsverzeichnis:

Vorwort ... 6
Abkürzungsverzeichnis ... 7

Teil I
1. Einleitung ... 8
 1.1. Epidemiologie und Therapierichtlinien ... 8
 1.2. Das experimentelle Schädel-Hirn-Trauma ... 10
 1.3. Posttraumatisches Hirnödem .. 14
 1.3.1. Vasogenes Hirnödem ... 15
 1.3.2. Zytotoxisches Hirnödem ... 15
 1.3.3. Osmotisches Hirnödem .. 17
 1.3.4. Spezifische Aspekte des posttraumatischen Hirnödems 17
 1.4. Posttraumatischer Zelltod ... 20
 1.5. Bedeutung von Therapiestudien beim Schädel-Hirn-Trauma 24

Teil II
2. Fragestellung .. 27
 2.1. Zusammenfassung der eigenen Ergebnisse ... 28
 2.2. Technische Voraussetzung zur Untersuchung der Mikrozirkulation 28
 2.3. Veränderungen der Mikrozirkulation nach fokaler Kontusion 35
 2.4. Veränderungen des Energiemetabolismus nach Controlled Cortical Impact (CCI) 48
 Thomale UW et al., Neurol Res. 2007; 29: 594-603.
 2.5. Lokale Immunreaktion nach CCI .. 60
 2.5.1. Hyperonkotisch hyperosmotische Therapie .. 64
 2.5.2. Anti-oxidative Therapie ... 75
 2.5.3. Anti-inflammatorische Therapie ... 83
 Thomale UW et al., Immunobiology, 2007, 212, 567-576.
2.6. Zusammenfassung ... 94
2.7. Fazit.. 95
2.8. Literaturverzeichnis ... 96
2.9. Danksagung ... 103
2.10. Eidesstattliche Erklärung ... 104
Vorwort:

Diese Habilitation beruht im Wesentlichen auf dem Inhalt der nachfolgend aufgelisteten Publikationen (P1-P6). Danach wird die nach der neuen Habilitationsordnung vom 9. Juni 2005 gegebene Möglichkeit zur Vorlage einer kumulativen Habilitationsschrift, die sich „auf eigene publizierter Forschungsergebnisse stützt, die in Form von Originalarbeiten in die Habilitationsschrift einbezogen sind“ genutzt. Weitere Publikationen des Habilitanden, die nicht in dieser Arbeit verwendet wurden, sind im separaten Schriftverzeichnis des Curriculum Vitae aufgeführt. Thematisch behandeln die folgenden Arbeiten die posttraumatischen Veränderungen nach experimenteller kortikaler Kontusion und dessen Bedeutung für Therapiestudien:

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>μg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>μl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>μm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADC</td>
<td>apparent water diffusion coefficient</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-Amino-3-hydroxy-5-methyl-4-isoxazolprionat</td>
</tr>
<tr>
<td>aPCO₂</td>
<td>arterieller Kohlendioxid-Partialdruck</td>
</tr>
<tr>
<td>aPO₂</td>
<td>arterieller Sauerstoff-Partialdruck</td>
</tr>
<tr>
<td>atm</td>
<td>Atmosphären</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BHS</td>
<td>Blut-Hirn-Schranke</td>
</tr>
<tr>
<td>Ca</td>
<td>Kalzium</td>
</tr>
<tr>
<td>ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>CBF</td>
<td>Zerebraler Blutfluss</td>
</tr>
<tr>
<td>CCI</td>
<td>Controlled Cortical Impact</td>
</tr>
<tr>
<td>CCT</td>
<td>kraniales Computertomogramm</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CPP</td>
<td>zerebraler Perfusionsdruck</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomogramm</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DGNc</td>
<td>Deutsche Gesellschaft für Neurochirurgie</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxiribonukleinsäure</td>
</tr>
<tr>
<td>DWI</td>
<td>diffusionsgewichtete Bildgebung</td>
</tr>
<tr>
<td>EB</td>
<td>Evans Blue</td>
</tr>
<tr>
<td>EBIC</td>
<td>European Brain Injury Consortium</td>
</tr>
<tr>
<td>FG</td>
<td>Feuchtgewicht</td>
</tr>
<tr>
<td>GG</td>
<td>gegebenfalls</td>
</tr>
<tr>
<td>H</td>
<td>Wasserstoff</td>
</tr>
<tr>
<td>HAES</td>
<td>Hydroxyethylstärke</td>
</tr>
<tr>
<td>HE</td>
<td>Hämatoxilin-Eosin</td>
</tr>
<tr>
<td>HHES</td>
<td>HyperHAES</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>ICP</td>
<td>intrakranieller Druck</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Inj.</td>
<td>Injektion</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>M</td>
<td>molare Lösung (1mol/l)</td>
</tr>
<tr>
<td>M/s</td>
<td>Meter/ Sekunde</td>
</tr>
<tr>
<td>MAD</td>
<td>mittlerer arterieller Blutdruck</td>
</tr>
<tr>
<td>Min.</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter Quecksilbersäule</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>Ms</td>
<td>Millisekunden</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl der Versuchstiere</td>
</tr>
<tr>
<td>N₂</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartat</td>
</tr>
<tr>
<td>NO</td>
<td>Stickoxyl</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl</td>
</tr>
<tr>
<td>OPS</td>
<td>Optical Polarized Spectral Imaging</td>
</tr>
<tr>
<td>P</td>
<td>hydrostatischer Druck</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzniveau</td>
</tr>
<tr>
<td>pH</td>
<td>Wasserstoffionenkonzentration (-log[H⁺])</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>rt-PCR</td>
<td>real-time polymerase chain reaction</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>s.o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler der Mittelwerte</td>
</tr>
<tr>
<td>SHT</td>
<td>Schädel-Hirn-Trauma</td>
</tr>
<tr>
<td>sog.</td>
<td>so genannt</td>
</tr>
<tr>
<td>Std.</td>
<td>Stunde</td>
</tr>
<tr>
<td>STD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TG</td>
<td>Trockengewicht</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>TTC</td>
<td>2,3,5-Triphenyltetrazoliumchlorid</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>v.a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Teil I

Posttraumatische Veränderungen nach experimenteller kortikaler Kontusion und deren Bedeutung für Therapiestudien.

1. Einleitung

1.1. Epidemiologie und Therapierichtlinien

Das Trauma ist in allen industrialisierten Ländern der Welt die wichtigste Ursache für Mortalität und Morbidität im Lebensalter von 20-40 Jahren. Entsprechend der „World Health Organisation“ (WHO) starben allein 1998 5,8 Millionen Menschen an den Folgen eines Schädel-Hirn-Traumas (SHT). In den USA wird als ursprüngliche Todesursache das SHT jährlich bei 50 bis 75 Tausend Patienten angegeben und 6 Millionen Menschen leiden zum jetzigen Zeitpunkt an den Folgen einer traumatischen Hirnverletzung (NIH, 1999; Thurmann und Guerrero 1999). Auf Basis einer Literaturzusammenfassung wird die europäische Inzidenz bei 235 hospitalisierten SHT-Patienten pro 100.000 Einwohner geschätzt (Tagliaferri et al., 2006). In Deutschland werden jährlich zwischen 266.000 bis 276.000 Menschen wegen eines SHT hospitalisiert. Die Inzidenz schwer Schädel-Hirn verletzter Patienten liegt aktuell bei rund 33,5 Patienten auf 100.000 Einwohner. Die Mortalität ist dank verbesserter Therapie und Prävention in den letzten Jahren kontinuierlich gesunken. Sie lag 1972 bei 27,2 und im Jahre 2000 bei 9 Sterbefällen pro 100.000 Einwohner (Steudel et al., 2005).

mediatorvermittelten Zelluntergangs für SHT-Patienten nach wie vor Ziel der aktuellen Untersuchungen.

1.2. Das experimentelle Schädel-Hirn-Trauma

Bei der Testung von neuroprotektiven Substanzen im Rahmen des SHT ist die Vielschichtigkeit dieses Krankheitsbildes zu berücksichtigen. Wichtige Teilspektren des SHT sind die fokale Kontusion, das Hirnödem, die intrakranielle Blutung, die Perfusionsstörung und der mechanische Nervenfaserschaden (diffuser Axonschaden). Bei Patienten liegen diese Teilspektren kombiniert in jeweils unterschiedlicher Ausprägung vor. Die Teilspektren sind therapeutisch unterschiedlich zugänglich und können tierexperimentell in verschiedenen Modellen imitiert werden. Dafür werden die Modelle der fokalen oder globalen Ischämie (Smith et al., 1984; Tamura et al., 1981) und die Modelle des subduralen oder intrazerebralen

Die am häufigsten verwendeten Modelle sind an Ratten durchgeführt worden. Im Folgenden werden die vier wichtigsten Modelle des Schädel-Hirn-Trauma noch einmal charakterisiert: 1. Modell der kortikalen Kälteläsion, 2. das sog. „Weight Drop“-Modell und 3. das „Fluid Percussion“-Modell und 4. das von uns verwendete „Controlled Cortical Impact“-Modell (Dixon et al., 1987; Dixon et al., 1991; Klatzo et al., 1958; Marmarou et al., 1994).

Die kortikale Kälteläsion wurde von Klatzo (Klatzo et al., 1958; Klatzo et al., 1967) eingeführt, und unter den hier beschriebenen ist es das älteste Modell einer experimentellen Hirnläsion. Es galt lange Zeit als ein einfaches, standardisiertes und relevantes SHT-Modell und wurde in vielen Aspekten untersucht (Eriskat et al., 1994; Schneider et al., 1994; Unterberg et al., 1994; von Berenberg et al., 1994). Hierbei wurde auf den freigelegten Kortex der Ratte ein Kältestempel mit definierter Temperatur, Größe und Zeit gesetzt. Es entsteht eine kortikale Kältenekrose, die von einer Grenzzone mit geschädigtem Endothel und damit

Thomale U.-W.

Einleitung

1.3. Posttraumatisches Hirnödem

1.3.1. Vasogenes Hirnödem

Das vasogene Hirnödem ist eine häufige Komplikation bei einem zerebrovaskulären Insult, Trauma, bei Tumoren und inflammatorischen Prozessen. Vorrätssetzung des vasogenen

1.3.2. Zytotoxisches Hirnödem

1.3.3. Osmotisches Hirnödem

1.3.4. Spezifische Aspekte des posttraumatischen Hirnödems

Membranen. Das hat wiederum die unkontrollierte Schwellung von Neuronen und Astrozyten zur Folge.

1.4. posttraumatischer Zelltod

Die Nekrose ist ein durch äußere Stimuli hervorgerufener primärer oder sekundärer Zellschaden, der zum Zelltod führt. Als primäre Ursache nach zerebralem Trauma ist die mechanische Einwirkung auf das Hirngewebe zu verstehen, die zu einem direkten Untergang von Neuronen führt. Diesen Untergang bezeichnet man als sog.

Als weiterer Faktor des sekundären Hirnschadens nach Trauma wird der sog. „oxidative Stress“ diskutiert, bei der es zur Freisetzung freier Radikale im Gewebe kommt (Globus et al.,
1995; Lewen et al., 2001; Mikawa et al., 1996). Eine große Bedeutung hat hierbei vermutlich das Radikal Superoxid \((\text{O}_2^-)\). Man geht davon aus, dass sich an dessen Entstehung eine Reihe von weiteren Mechanismen anschließt, die eine Lipidperoxidation bewirken und aufrechterhalten. Für die Entstehung der freien Radikale nach SHT werden verschiedene Ursachen diskutiert. Dazu gehören die Arachidonsäure-Kaskade (Prostaglandin-Synthetase, 5-Lipoxygenase-Aktivität), die enzymatische Autooxidation von biogenen Aminen (Dopamin, Noradrenalin, Serotonin), die Xanthin-Oxidase-Aktivität und die Oxidation des nach extravasal übergetretenen Hämaglobins. Inflammatorische Reaktionen im Rahmen einer aktivierten Mikroglia, infiltrierenden neutrophilen Granulozyten und Makrophagen können ebenfalls an der Entstehung von freien Radikalen beteiligt sein (Hall, 1997; Leker und Shohami, 2002). Neben Superoxid ist auch auf die Bedeutung von Stickoxyl Radikalen \((\text{NO}^\cdot)\) hingewiesen worden (Radi et al., 1991; Wada et al., 1998). Beide sind an der Entstehung des reaktionsfreudigeren Hydroxyl-Radikals \((\text{OH}^\cdot)\) beteiligt, das als direkter Initiator der Lipidperoxidation gilt. Die posttraumatische Entstehung von Hydroxylradikalen konnte nach Controlled Cortical Impact Injury in Form eines vorübergehenden Anstiegs nachgewiesen werden. Dabei wurde der Höchstwert 5-15 Minuten nach Trauma erreicht, während ein kontinuierlicher Anstieg der Lipidperoxidation innerhalb der ersten Stunde nach Trauma gemessen wurde (Smith et al., 1994). In experimentellen Studien können Antioxidantien und Radikalfänger, wie z.B. Melatonin und Tirilazad, das Kontusionsvolumen verringern und das neurologische Outcome der Versuchstiere verbessern (Kawamata et al., 2002; Sarrafzadeh et al., 1997; Smith et al., 1994).

Die inflammatorische Reaktion nach Trauma ist äußerst komplex und bis heute besteht in Bezug auf deren Beteiligung an der Neurotoxizität keine Einigkeit. Prinzipiell wird postuliert, dass die Immunreaktion in der Frühphase an der Entstehung des Sekundärschadens beteiligt ist und die spät einsetzenden Mechanismen reparative Bedeutung haben (Bethea und Dietrich, 2002; Kersteiner et al., 1999). Dies wird dadurch unterstützt, dass eine Reduktion der akuten Immunreaktion durch Antikörper Behandlung und Hypothermie eine neuroproektive Wirkung zeigte (Carlos et al., 1997; Chazipanteli et al., 2000). Jedoch ist ein klarer Zusammenhang zwischen Immunzellinvasion bzw. –aktivierung und sekundärer Zellschädigung nie hergestellt worden (Emerich et al., 2002). Demnach sind weitere Untersuchungen notwendig sind, um zu klären, inwiefern die Beeinflussung der neuroinflammatorischen Reaktion nach Trauma einen gangbaren therapeutischen Weg aufzeigen kann (Leker und Shohami, 2002).
1.5. Bedeutung von Therapiestudien des Schädel-Hirn-Traumas

Die Erweiterung der Therapie des SHT zur gezielten Behandlung spezifischer Mechanismen des sekundären Hirnschadens ist nach wie vor eine Herausforderung. Die heute in der klinischen Routine angewendeten Therapie-Strategien richten sich nach den Guidelines der „American Association of Neurological Surgeons“ (AANS) und des „European Brain Injury Consortiums“ (EBIC) (Brain Trauma Foundation, 2000; Bullock et al., 1995; Maas et al., 1997). Demnach beschränkt sich nach aktueller Datenlage die Intensivtherapie des SHT auf die klinische Stabilisierung des Patienten, die Senkung des intrakraniellen Druckes, die Aufrechterhaltung der zerebralen Perfusion sowie die Vermeidung und Therapie eventueller Komplikationen, wie der arteriellen Hypotension, der Hypoxie oder von Infektionen etc.. Der Routine-Einsatz von neuroprotektiven Substanzen, die die pathophysiologischen Mechanismen von Mediatorsystemen des sekundären Hirnschadens hemmen, ist bis heute nicht möglich. Es sind in den letzten Jahren zwar deutliche Fortschritte gemacht worden, die pathophysiologischen Vorgänge des sekundären Hirnschadens nach SHT besser zu verstehen. In diesem Zusammenhang konnten unter experimentellen Bedingungen in der jüngeren Vergangenheit eine Reihe von Substanzen identifiziert werden, die in der Lage sind die Entstehung des posttraumatischen Schadens nach kortikaler Kontusion zu reduzieren. Dabei wurden verschiedener Mediatorsysteme wie die Glutamat- sowie Caspase-Freisetzung oder die Entstehung des oxidativen Stresses gehemmt, welches eine neuroprotektive Wirkung zur Folge hatte (Movsesyan und Faden, 2006; Abrahamson et al., 2006; Stover et al., 2003; Dempsey und Raghavendra, 2003; Aoyama et al., 2002; Kroppenstedt et al., 1998; Sarrafzadeh et al., 1997). Genauso sind eine Reihe von Substanzen entwickelt worden, die sich aufgrund viel versprechender Ergebnisse im Rahmen von experimentellen Studien den Weg bis zur klinischen Testung gebahnt haben. Die daraufhin doppell-blind durchgeführten, prospektiven, randomisierten Multicenter Studien haben jedoch für keine Substanz eine Rechtfertigung für den Einsatz in der klinischen Routine finden können (Maas et al., 2006; Marmarou et al., 2005; Yurkewicz et al., 2005; Bullock et al., 1995; Marshall et al, 1995).

Diese Tatsache hat nach Bullock und Faden folgende Gründe: Ein zu allgemein gehaltenes Studiendesign schließt häufig jedes schwere SHT ohne Berücksichtigung der einzelnen vorliegenden pathologischen Teilaspekte ein. Das Studienziel wird häufig auf die allgemeine Verbesserung des klinischen Outcomes der Patienten ausgerichtet. Dieses ungezielte Vorgehen ist äußerst teuer, benötigt einen enormen Zeitaufwand und eine sehr hohe Anzahl von Patienten. Es besteht die Gefahr, dass solche Studien fälschlicherweise einen signifikanten Unterschied zwischen den Gruppen verpassen, nur weil die Anzahl der Patienten zu klein war (Bullock, 1997; Faden, 1997; Doppenberg et al., 2004). Ein weiteres
Problem ist, dass die Auswahl einer Substanz für die klinische Testung mit nur unzureichenden experimentellen Daten gerechtfertigt wurde (Bullock, 1997).

Mit dem Ziel, einerseits eine sinnvolle experimentelle Basis für geplante klinische Studien zu liefern und andererseits die Vereinfachung der Studien zu erreichen beschreibt Bullock vier wesentliche Punkte zur Verbesserung der klinischen Erprobung neuroprotektiver Substanzen (Bullock, 1997; Doppenberg et al., 2004):

Erstens: Definition eines Studienziels, bei dem der Einfluss einer Substanz auf einen der Teilaspekte des SHT als Studienendpunkt festgelegt wird. Dieser Studienendpunkt sollte nachweislich ein Prediktor des klinischen Outcomes für das SHT sein.

Zweitens wird die Patientenselektion anhand der von Bullock definierten Teilaspekte des Hirngewebschadens nach SHT genannt. Es beinhaltet die Punkte Hämatom, Kontusion, diffuser Axonschaden, Ischämie und wäre noch um den Punkt Hirnödem zu erweitern. Diese Teilaspekte treten im Rahmen eines SHT nie isoliert auf. Im Einzelfall nehmen jedoch einzelne Teilaspekte eine führende Rolle in dem Krankheitsverlauf ein.

Drittens: Die suffiziente tierexperimentelle Testung potentiell neuroprotektiver Substanzen zur Differenzierung der optimalen Wirkung auf eines der Teilaspekte nach SHT entsprechend unterschiedlicher Tiermodelle. Grundlage hierfür ist eine der oben erwähnten Kritikpunkte, die den zu schnellen Einstieg in die klinische Studie betrifft, ohne eine ausreichende tierexperimentelle Evaluation vorzuschalten.

Viertens: Die Bedeutung von Phase II Studien soll zukünftig aufgewertet werden, um anhand einer kleineren Patientenzahl eine klare Richtung für eine gezielte Therapie von Patientensubtypen erreichen zu können. Nur nach erfolgreichem Abschluss einer Phase II Studie ist der Schritt in eine Phase III Studie zu rechtfertigen.

Teil II

2. Fragestellung

2.1. Zusammenfassung der eigenen Ergebnisse

2.2. Technische Voraussetzung zur Untersuchung der Mikrozirkulation

2.3. Veränderungen der Mikrozirkulation nach fokaler Kontusion

Thomale UW, Kroppenstedt SN, Beyer TF, Schaser KD, Unterberg AW, Stover JF.

konnte gezeigt werden, dass die vulnerable Phase des Hirngewebes bei 4 Stunden nach Trauma liegt, in der es durch Schwankungen des systemischen Blutdruckes zu weiteren Schädigungen des Hirngewebes wie z.B. zu lokalen Ischämien kommen kann.
2.4. Veränderungen des Energiestoffwechsels nach CCI

vermuten, dass der erhöhte Energiebedarf in der Kontusion und in benachbarten Regionen von entfernten Arealen substituiert wird.

Hierfür wurde bei 52 Sprague Dawley Ratten (300-350g) eine links parietale Trepanation durchgeführt und eine fokale Kontusion auf die intakte Dura mater mit einer standardisierten Geschwindigkeit von 7 m/s appliziert. In unterschiedlichen Gruppen wurden zwei Traumastärken anhand unterschiedlicher Deformationstiefen (2mm oder 2,5mm) der Kortexoberfläche differenziert. Parallel bestand eine Gruppe aus scheinoperierten Tieren (n=24), bei denen die Trepanation ohne Trauma-Applikation durchgeführt wurde. Als Endpunkte wurden 4, 24 und 96 Stunden gewählt, um die Tiere entsprechend zu entbluten und das Hirngewebe in toto zu entnehmen. Als Kontrollen diente eine Gruppe von Tieren (n=8), bei denen die Hirnentnahme ohne vorheriger Intervention erfolgte. Vor der entsprechenden Hirnentnahme wurden der intrakranielle Druck (ICP) und das Körpergewicht (KG) bestimmt. Um die Zytokinexpression zu charakterisieren wurden real-time-PCR Analysen für IL-6, IL-10, IL-12, TNF-α und IFN-γ durchgeführt. Zur Darstellung der Immunzellinfiltration wurden immunhistochemische Färbungen angefertigt mit den Markern ED-1 für phagozytierende Zellen, Ox-6 für MHC-Klasse II aktivierte Zellen (antigenpräsentierende Zellen; APC) und His-48 für neutrophile Granulozyten. Die Anzahl der Zellen wurde in der kortikalen Region innerhalb der Kontusion und benachbart davon mittels der Zählkammer-Methode quantifiziert.

Bei den Ergebnissen zeigte sich, dass die Traumastärke sowohl mit der Abnahme des Körpergewichtes als auch mit der Steigerung des intrakraniellen Druckes korrelierte (Abb. 1 und Abb. 2).
Mittels “real time-PCR” wurde eine signifikante Hochregulation der Zytokin-mRNA von TNF-α, IL-6, IL-10 und IL-12 zu dem Zeitpunkt 4 Stunden nach Trauma gemessen. Ausschließlich IFN-γ zeigte keine signifikanten Veränderungen auf mRNA-Ebene. Es wurden keine Traumastärken abhängigen Veränderungen festgestellt (Abb. 3). Die Ergebnisse sind als relative Veränderungen zum sog. „housekeeping gene“ β-Actin als logarithmische Werte angegeben.
Abb. 1: Relative, mittlere Veränderungen des Körpergewichtes zum Zeitpunkt vor der Hirnentnahme im Vergleich zu den prätraumatischen Werten. Der Gewichtsverlust korreliert mit der Traumastärke. (n=8/Gruppe; * p<0.05 vs. Schein-OP)

Abb. 2: Intrakranieller Druck (ICP) 4, 24 und 96 Stunden nach Trauma. Der ICP korreliert mit der Traumastärke und zeigte 24 Stunden nach dem schweren Trauma (2.5 mm) die höchsten Werte (n=8/Gruppe; * p<0.05 vs. Schein-OP)

Abb. 3: Expression der mRNA von TNF-α, IL-6, IL-10, IL-12 und IFN-γ dargestellt über die Zeit nach zwei verschiedenen Traumastärken verglichen mit scheinoperierten und Kontrolltieren. Eine signifikant erhöhte Expression der Zytokin-mRNA zeigte sich für TNF-α, IL-6, IL-10, und IL-12 4 Stunden nach Trauma. Im Gegensatz hierzu zeigte die IFN-γ Expression keine signifikanten Veränderungen. Zwischen Trauma-Stärke und mRNA Expression zeigte sich nur bei IL-6 eine tendenzielle Korrelation. (n=8/Gruppe; * p<0.05 vs. Schein-OP; # p<0.05 vs. Kontrolle)
Immunhistologische Färbungen der posttraumatischen Hirngewebschnitte mit den entsprechenden Antikörpern zeigten einen signifikanten Anstieg der Infiltration von neutrophilen Granulozyten (His-48) 24 Stunden nach Trauma innerhalb der Kontusion und des perikontusionellen kortikalen Areals (Abb. 4 und 5). ED-1-positive Zellen (phagozytierende Zellen) und Ox-6-positive Zellen (MHC-Klasse II positive Zellen) zeigen sich vornehmlich zum späten Zeitpunkt 96 Stunden nach Trauma-Ereignis (Abb. 5).

![Immunzell Infiltration](image)

Abb. 4: Repräsentative immunhistologische Färbung mit dem His-48 Marker, welcher die Infiltration von neutrophilen Granulozyten innerhalb der Kontusion darstellt. Es zeigte sich die stärkste granulozytäre Infiltration 96 Stunden nach Trauma.

Abb. 5: Quantifizierung der infiltrierenden Immunzellen innerhalb der Kontusion und der perikontusionellen Region 4, 24 und 96 Stunden nach Trauma. Die Infiltration bzw. Aktivierung von neutrophilen Granulozyten (His-48, blau), phagozytierenden Zellen (ED-1, grün) und Antigen präsentierenden Zellen (MHC-II+; Ox-6, rot) sind dargestellt. Neutrophile Granulozyten sind bereits zum Zeitpunkt 24 Stunden nachweisbar, während die Immunzell-infiltration /Aktivierung von ED-1+ and Ox-6+ Zellen 96 Stunden nach Trauma dominiert (n=5/Gruppe; * p<0.05 vs. 4Stunden).
2.5. Therapiestudien nach lokaler Hirnkontusion

2.5.1. Hyperonkotisch-hyposmotische Therapie

2.5.2. Anti-oxidative Therapie

2.5.3. Antiinflammatorische Therapie

2.6. Zusammenfassung

In der Frage, ob die Verringerung des regionalen Blutflusses nicht nur eine vulnerable Phase für sekundäre Ischämien darstellt, sondern auch selbst als Faktor zur Vergrößerung des sekundären Hirnschadens nach traumatischer Läsion in Frage kommt, haben wir diesen Faktor therapeutisch ausgeschaltet. Durch HyperHAES, einer Kombination von Hydroxyäthylstärke und hyperosmolarer Kochsalzlösung konnte einerseits eine Verbesserung der regionalen Blutflusses 4 Stunden nach Trauma nachgewiesen und andererseits eine Verringerung der Hirngewebschädigung erreicht werden. Ob die Wirkung von Oxidantien auch einen Einfluss auf die gestörte Mikrozirkulation hat oder auf die Ausbreitung des Sekundärschadens wurde mit Hilfe von N-Acetylcystein untersucht. Hier konnte weder auf den Blutfluss noch auf die Ödemausbreitung oder das Kontusionsvolumen ein signifikanter Einfluss beobachtet werden. Zur anti-inflammatorischen Therapie wurde Tacrolimus eingesetzt, welches als Immunsuppressivum nach Transplantationen klinisch im Gebrauch ist. Obwohl hier eine signifikante Reduktion der Immunzellinfiltration vor allem 72 Stunden nach
Trauma nachweisbar ist hatte dies keine Auswirkung auf die Ausbreitung des Kontusionsvolumens.

2.7. Fazit

2.8. Literaturverzeichnis

Thomale U.-W.

Kellie G (1824): The kind of appearances observed in the dissection of two or three individuals ... with some reference to the pathology of the brain. Trans Med Chi Edin 1:84-169.

Thomale U.-W.

Literaturverzeichnis

2.9. Danksagung

Mein Dank gilt besonders Herrn PD Dr. John Stover, der durch kritische Betrachtung von Methoden und Ergebnissen die Beantwortung von Fragstellungen verbessert hat und das Interesse für neue Überlegungen immer wieder befruchten konnte.

Mein Dank gilt vor allem den Mitarbeitern des neurochirurgischen Labors und der neuroimmunologischen Arbeitsgruppe, besonders Martin Griebenow und Pablo Casalis, die unerschöpflichem Enthusiasmus aufbringen, um neurotraumatologische Fragestellungen zu ergründen.

Mein Dank gilt auch Herrn Professor Christian Woiciechowsky. Er hat mich darin maßgeblich unterstützt, die Ressourcen zur Umsetzung von wissenschaftlicher Arbeit ausfindig zu machen und durch viel Kreativität den Motor der kontinuierlich notwendigen Arbeit anzutreiben.

Für die Möglichkeit mich neben der klinischen Tätigkeit wissenschaftlicher Arbeit widmen zu können, danke ich meinen Kollegen und Kolleginnen der Neurochirurgischen Klinik und vor allem dem Leiter des Arbeitsbereiches Pädiatrische Neurochirurgie Herrn PD Dr. Hannes Haberl sowie Frau Dr. Karin Schwarz.

Für die technische Unterstützung bei der Umsetzung der Versuche möchte ich Frau Sabine Seidlitz, Jasmin Kopetzki, sowie den Kooperationspartnern Herrn Professor Andreas Unterberg, Frau Professor Angelika Mautes, Herrn Marcel Bender, Dr. Thomas Beyer, Dr. Nils Dohse, PD Dr. Stefan Kroppenstedt, Dr. Stefan Rupprecht, Dr. Oliver Sakowitz, Dr. Klaus-Dieter Schaser und Dr. Ralf Stroop danken.
2.10. Eidesstattliche Erklärung

§ 4 Abs. 3 (k) der HabOMed der Charité

Hiermit erkläre ich, dass

- weder früher noch gleichzeitig ein Habilitationsverfahren durchgeführt oder angemeldet wird bzw. wurde,
- welchen Ausgang ein durchgeführtes Habilitationsverfahren hatte,
- die vorgelegte Habilitationsschrift ohne fremde Hilfe verfasst, die beschriebenen Ergebnisse selbst gewonnen sowie die verwendeten Hilfsmittel, die Zusammenarbeit mit anderen Wissenschaftlern/Wissenschaftlerinnen und mit technischen Hilfskräften sowie die verwendete Literatur vollständig in der Habilitationsschrift angegeben wurden.
- mir die geltende Habilitationsordnung bekannt ist.

Datum

Unterschrift

