SWeMPs: A Semantic Web-enabled Multimedia Presentation System

Dissertationsschrift
zur Erlangung des Doktorgrades

vorgelegt von
Lyndon J B Nixon BA MSc

Berlin, 22 August 2006

Gutachter: Prof. Dr. Robert Tolksdorf
Freie Universität Berlin
Fachbereich Mathematik und Informatik

Asst. Prof. Yiannis Kompatsiaris
Centre for Research and Technology Hellas
Informatics and Telematics Institute

Abstract

We propose a framework for an Intelligent Multimedia Presentation System which is tightly integrated to the distributed knowledge of the Semantic Web. This knowledge integration is the basis for the development of more flexible and intelligent information services. An implementation of this framework acts as a proof of concept.

The Web contains a lot of information but computers can't do very much with it. We have access to and a need for a lot of information (thanks to pervasive information devices such as mobile phones, PDAs, smart devices, TV, radio...) but we don't have time to find and make associations between information every time we want to. Given the need for quick, intuitive access to information, multimedia presentation is an effective form of communication - different media act as a better means to communicate dependant on the context, and synchronization (organisation of media in space and in time) can express non-verbally relationships between the content (e.g. linear presentation to represent a timeline of events).

 Appropriately delivering content in the form of synchronized multimedia is a complex task which needs to meet the requirements of the user, device, and actual context. This proves to be too complex to be fulfilled by manually authoring for all possibilities. This has lead to efforts in developing systems for (semi-)automatic multimedia generation.

Knowledge representation techniques developed in earlier AI work are being applied to the World Wide Web. Through standards such as RDF and OWL, the so-called "Semantic Web" offers the potential of a large scale distributed knowledge repository built upon the existing Web infrastructure. This makes powerful amounts of knowledge available to Web-based applications as the basis for a new paradigm of Web-oriented services which are intelligent, dynamic, flexible and user-centred.

Such services could find the information we need and present it to us in an effective manner. The current situation of Web content discovery and delivery displays significant disorder and inflexibility: natural language is problematically ambiguous and Web content is only adaptive to a limited extent. Using the Semantic Web, intelligent Web clients will be able to deliver the correct information every time by unambiguously understanding the meaning of queries and reasoning on them (through the knowledge available to them on the Web) to come to an answer. Likewise, Web resources will be described with metadata that supports their selection, adaptation and presentation to the needs of the client. Such a paradigm shift in Web-based systems (from content to knowledge-centred) requires a similar paradigm shift in system models, architectures, implementations and operations. This is equally the case for multimedia presentation systems.

We propose a framework for a new type of multimedia presentation system in which the multimedia generation process is tightly integrated with the distributed knowledge of the Semantic Web. Unlike previous work in which knowledge is narrowly defined and used by the system, this approach is built with the scale and dynamics of the Web in mind. We name this framework SWeMPs - a Semantic Web-enabled Multimedia Presentation System.
Abstract

The key results of our research are the conceptual model for a multimedia presentation system and the generic rule base which interacts with that model (through querying, reasoning and deriving new knowledge) to realise individual multimedia generation tasks. These form the basis for an implementation of a multimedia presentation system which is fundamentally different from existing multimedia presentation systems in that it operates at the logical or conceptual level rather than the data or syntactic level. This reflects the reality that what users seek is information (knowledge about concepts) and effective communication of that information (respecting the relationships between concepts). It leverages the potential of the Semantic Web as a distributed, large scale, accessible repository of knowledge about the world of the user just as systems today use the Web as a repository of content. The implementation of this proposal serves as a ‘proof of concept’ and as a basis for the evaluation of the new approach through use cases.
Acknowledgements

I wish to thank Prof Angela Scheller and Prof Dr Radu Popescu-Zeletin for their important guidance and support during my three year DAAD funded stay at the Fraunhofer Institute FOKUS. It was there that I deepened my knowledge and interest in issues of multimedia and discovered my research topic of multimedia presentation generation.

I also thank Prof Robert Tolksdorf and the members of the Networked Information Systems (NBI) working group at the Free University of Berlin. I am fortunate to have been a researcher in this group since 2004 and wish to thank Prof Tolksdorf for his patience, time and valuable advice in these past two years. I am also grateful to the other members of the working group who have listened to me at PhD symposiums and group meetings, and often have offered a fair share of good advice as well.

I also came to know Asst Prof Yiannis Kompatsiaris and the activities of the Multimedia Knowledge Group of which he is head through the EU Network of Excellence KnowledgeWeb. I thank him for discussions and also the opportunity of a research stay with the group in Greece. Most of all I thank him for making time to act as a referee for this dissertation.

Finally, I thank my parents Alexander and Sandra Nixon and my wife, Nancy. Their support and understanding in this long journey towards a PhD has been invaluable. Thank you.
Dedication

I wish to dedicate this dissertation to the memory of Maria Julia Gramajo de Lemus.

Her love and endurance in the face of life’s tribulations set an example to us all. The contribution of this doctoral research pales into insignificance in comparison to her achievements in life, and remind us always of what is truly important. She will remain in our hearts and thoughts always.

Even when I walk through the dark valley of death, I will not be afraid, for you are close beside me. Your rod and your staff protect and comfort me.

You prepare a feast for me in the presence of my enemies. You welcome me as a guest, anointing my head with oil. My cup overflows with blessings.

Surely your goodness and unfailing love will pursue me all the days of my life, and I will live in the house of the LORD forever.

Psalm 23:4-6
SweMPs – a Semantic Web enabled Multimedia Presentation System
Table of Contents

Abstract

Acknowledgements

Dedication

Table of Contents

List of Figures

Chapter 1 Introduction

Section 1.1 The idea underlying SweMPs

Section 1.1.1 Definitions

Section 1.2 Motivation

Section 1.3 Use Cases

Section 1.3.1 Photo-based Family tree scenario

Section 1.3.2 Interactive tourism television scenario

Section 1.4 Requirements

Section 1.4.1 Problem statement

Section 1.5 Outline of Thesis

Section 1.6 Scope of the work

Chapter 2 Background

Section 2.1 Traditional multimedia generation

Section 2.1.1 Annotation and Retrieval

Section 2.1.2 Adaption

Section 2.1.3 Presentation

Section 2.2 Knowledge Representation Theory

Section 2.3 Knowledge Representation for the Web

Section 2.4 Knowledge Representation and Multimedia

Section 2.4.1 Application Internal Representations

Section 2.4.2 Standards for Multimedia Content Representation

Section 2.4.3 MPEG-7 and Knowledge Representation

Section 2.4.4 Multimedia annotation and the Semantic Web

Section 2.5 An Intelligent MultiMedia Presentation System (IMMPS)

Section 2.6 Summary

Chapter 3 State of the Art

Section 3.1 Retrieval of data from different sources

Section 3.2 Processing heterogeneous content

Section 3.3 Incorporation of contextual adaptation into the process
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 3.4 Dynamic integration of external knowledge</td>
<td>48</td>
</tr>
<tr>
<td>Section 3.5 Presentation of multimedia on the basis of expressed concepts and their relationships</td>
<td>50</td>
</tr>
<tr>
<td>Section 3.6 Taxonomy</td>
<td>56</td>
</tr>
<tr>
<td>Section 3.7 Conclusion</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 4 Conceptual Model and Framework</td>
<td>59</td>
</tr>
<tr>
<td>Section 4.1 Overview of SWeMPs</td>
<td>59</td>
</tr>
<tr>
<td>Section 4.1.1 Plan for realisation</td>
<td>60</td>
</tr>
<tr>
<td>Section 4.1.2 Summary</td>
<td>63</td>
</tr>
<tr>
<td>Section 4.2 Definition of the conceptual model</td>
<td>63</td>
</tr>
<tr>
<td>Section 4.2.1 Basic constructs</td>
<td>65</td>
</tr>
<tr>
<td>Section 4.3 Definition of the conceptual framework</td>
<td>66</td>
</tr>
<tr>
<td>Section 4.3.1 SWeMPs requirements analysis and system design</td>
<td>68</td>
</tr>
<tr>
<td>Section 4.3.2 The SWeMPs conceptual framework</td>
<td>70</td>
</tr>
<tr>
<td>Section 4.3.3 SWeMPs components</td>
<td>71</td>
</tr>
<tr>
<td>Section 4.3.4 SWeMPs rulebase</td>
<td>74</td>
</tr>
<tr>
<td>Section 4.3.5 Rules for the multimedia generation</td>
<td>76</td>
</tr>
<tr>
<td>Section 4.3.6 Proposed model of interaction</td>
<td>81</td>
</tr>
<tr>
<td>Section 4.4 Formalising the conceptual model</td>
<td>85</td>
</tr>
<tr>
<td>Section 4.4.1 Conceptual model in the CLASSIC grammar</td>
<td>89</td>
</tr>
<tr>
<td>Section 4.4.2 Conceptual model in a Description Logic representation</td>
<td>90</td>
</tr>
<tr>
<td>Section 4.5 Conclusion</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 5 Implementation</td>
<td>92</td>
</tr>
<tr>
<td>Section 5.1 Software development methodology</td>
<td>92</td>
</tr>
<tr>
<td>Section 5.2 The rules-based system</td>
<td>93</td>
</tr>
<tr>
<td>Section 5.3 Component integration</td>
<td>96</td>
</tr>
<tr>
<td>Section 5.3.1 Ontology creation</td>
<td>96</td>
</tr>
<tr>
<td>Section 5.3.2 Ontology population</td>
<td>97</td>
</tr>
<tr>
<td>Section 5.3.3 Ontology storage</td>
<td>97</td>
</tr>
<tr>
<td>Section 5.3.4 Ontology reasoning</td>
<td>98</td>
</tr>
<tr>
<td>Section 5.3.5 Ontology query</td>
<td>99</td>
</tr>
<tr>
<td>Section 5.4 Service planner</td>
<td>101</td>
</tr>
<tr>
<td>Section 5.5 Multimedia modeller and formatter</td>
<td>105</td>
</tr>
<tr>
<td>Section 5.6 Rulebase</td>
<td>109</td>
</tr>
<tr>
<td>Section 5.7 Component APIs</td>
<td>121</td>
</tr>
<tr>
<td>Section 5.7.1 Conceptual model API</td>
<td>121</td>
</tr>
<tr>
<td>Section 5.7.2 Service space API</td>
<td>123</td>
</tr>
<tr>
<td>Section 5.7.3 Multimedia model API</td>
<td>125</td>
</tr>
<tr>
<td>Section 5.8 Conceptual model</td>
<td>126</td>
</tr>
<tr>
<td>Section 5.9 Conclusion</td>
<td>129</td>
</tr>
</tbody>
</table>
Table of contents

Chapter 6 Evaluation 130

Section 6.1 Methodology for the evaluation 131
Section 6.2 The importance of domain independence 133
Section 6.3 Scenario 1: A photo-based family tree 135
 Section 6.3.1 Summary 144
Section 6.4 Scenario 2: Interactive tourism television 145
 Section 6.4.1 Initial preparation for this scenario 145
 Section 6.4.2 Extracting the data 147
 Section 6.4.3 The conceptual model 155
 Section 6.4.4 Thematic interest scenario type 156
 Section 6.4.5 Focused touristic scenario type 160
 Section 6.4.6 Immediate viewing scenario type 162
 Section 6.4.7 Summary 164
Section 6.5 Evaluating the domain independence of the scenarios 166
Section 6.6 Conclusion 167

Chapter 7 Conclusion 168

Section 7.1 Results of this work 168
Section 7.2 SWeMPs and IMMPS: a comparison 169
Section 7.3 Further remarks on SWeMPs and possible extensions 171
Section 7.4 Future developments: multimedia and the Web 2.0 172
Section 7.5 Future impact and research directions 173

References 176

Appendix A: Zusammenfassung der Ergebnisse 187
Appendix B: Erklärung und Veröffentlichungen / Declaration and Publications 189
Lebenslauf 191
Epilogue 192
List of Figures

Figure 1.1 The Web evolution, present and future 3
Figure 1.2 Family tree scenario 9
Figure 1.3 iTV tourism scenario 11
Figure 1.4 Visualisation of thesis structure in terms of RUP 15

Figure 2.1 KAA platform architecture from aceMedia 20
Figure 2.2 Example of object and person detection 20
Figure 2.3 Comparison of Web multimedia models 22
Figure 2.4 Conceptual graph for ‘A cat is on the mat’ 27
Figure 2.5 The Semantic Web layer cake 30
Figure 2.6 A sample RDF graph 31
Figure 2.7 Reference architecture for IMMPSs 39

Figure 3.1 The MADEUS generation process 44
Figure 3.2 MADEUS proposal for adaptive presentation 46
Figure 3.3 The Cuypers generation engine 47
Figure 3.4 Architecture overview of CWI’s semantic inferencing system 54

Figure 4.1 Plan for realisation of SWeMPs 63
Figure 4.2 The General Design Cycle 67
Figure 4.3 SWeMPs conceptual framework as UML component diagram 71
Figure 4.4 Multimedia generation process according to [Nixon,2003] 75
Figure 4.5 Multimedia generation process as UML activity diagram 78
Figure 4.6 General form of a rules-based system 77

Figure 5.1 Sample integration with Semantic Web Services 104
Figure 5.2 A sample constraint 108
Figure 5.3 Rule 1 – extracting domains of discourse 110
Figure 5.4 Rule 2 – extracting ontologies and metadata 111
Figure 5.5 Rule 3 – adding knowledge to the conceptual model 112
Figure 5.6 Rule 4a – get query results 113
Figure 5.7 Rule 4b – using services to resolve queries dynamically 114
Figure 5.8 Rule 5 – finding resources for valid subjects 116
Figure 5.9 Rule 6 – adapting and inserting resources 117
Figure 5.10 Set non-membership as test for adaptation 118
Figure 5.11 Rule 7 – finalising the abstract multimedia model 119
Figure 5.12 Rule 8 – formatting the multimedia model 120
Figure 5.13 SWeMPs ontology 128
Figure 5.14 ZyX ontology 129

Figure 6.1 Qualitative evaluation in the software lifecycle 133
Figure 6.2 Division between domain-specific and domain-independent content 135
Figure 6.3 Knowledge base for Family Tree IIS 139
Figure 6.4 Final layout of a Family Tree result 143
Figure 6.5 SVG result of the Family Tree scenario 143
Figure 6.6 MPEG-7 Annotator being used to produce MPEG-7 with Semantic
Web concepts based on Yahoo Travel categorization 149
Figure 6.7 Scenario as SMIL Presentation in Real Player 159
Figure 6.8 Selecting the label displays additional content from the Web 160
Figure 6.9 Yahoo map with restaurant information 162
Figure 6.10 Yahoo map with restaurant information (based on proximity
Information and delivered to a mobile device) 164
SweMPs – a Semantic Web enabled Multimedia Presentation System