7 Literaturverzeichnis

1. Cleavage of tetrapeptide-pNA substrates by BIOMOL caspases.
 BIOMOL Research News (2000), 9, 9

 Dev Biol Stand (1986), 64: 33-37

 anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8)

 avenacin A-1 involves the reorganization of bilayer cholesterol.
 Biophys J (1999), 76(1 Pt 1): 281-290

5. Azemar, M., Schmidt, M., Arlt, F., Kennel, P., Brandt, B., Papadimitriou, A., Groner, B.,
 and Wels, W., Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit
 the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo.
 Int J Cancer (2000), 86(2): 269-275

6. Baluna, R., Rizo, J., Gordon, B. E., Ghetie, V., and Vitetta, E. S., Evidence for a
 structural motif in toxins and interleukin-2 that may be responsible for binding to
 endothelial cells and initiating vascular leak syndrome.
 Proc Natl Acad Sci U S A (1999), 96(7): 3957-3962

 saponin on biological cell membranes.
 Nature (1962), 196: 952-955

 RNA at multiple sites.
 Biochem J (1992), 286 (Pt 1): 1-4

 of saporin-L1: effect on various forms of mammalian DNA.
 Biochim Biophys Acta (2000), 1480(1-2): 258-266

11. Barth, S., Huhn, M., Matthey, B., Schnell, R., Tawadros, S., Schinkothe, T., Lorenzen, J.,
 Diehl, V., and Engert, A., Recombinant anti-CD25 immunotoxin RFT5(SCFV)-ETA'
 demonstrates successful elimination of disseminated human Hodgkin lymphoma in SCID mice.

12. Barth, S., Matthey, B., Huhn, M., Diehl, V., and Engert, A., CD30L-ETA': a new
 recombinant immunotoxin based on the CD30 ligand for possible use against human
 lymphoma.
 Cytokines Cell Mol Ther (1999), 5(2): 69-78

13. Barthelemy, I., Martineau, D., Ong, M., Matsunami, R., Ling, N., Benatti, L.,
 Cavallaro, U., Soria, M., and Lappi, D. A., The expression of saporin, a ribosome-inactivating protein from the plant Saponaria
 officinalis, in Escherichia coli.
 J Biol Chem (1993), 268(9): 6541-6548

 Szanto, A. J., Elevated furin expression in aggressive human head and neck tumors and
 tumor cell lines.

15. Bassi, D. E., Mahloogi, H., Lopez De Cicco, R., and Klein-Szanto, A., Increased furin activity enhances the malignant phenotype of
 human head and neck cancer cells.

86. Heisler, I., Sutherland, M., Bachran, C., Hebestreit, P., Schmitger, A., Melzig, M. F., and Fuchs, H., Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. *J Control Release* (2005), **106**(1-2): 123-137

118. Li, Q., Verschraegen, C. F., Mendoza, J., and Hassan, R., Cytotoxic activity of the recombinant anti-mesothelin immunotoxin, SS1(dsFv)PE38, towards tumor cell lines established from ascites of patients with peritoneal mesotheliomas. *Anticancer Res* (2004), 24(3a): 1327-1335

Biotechnology (1992), **24**: 17-27

Cell (1992), **69**(6): 1051-1061

Cancer Chemother Pharmacol (2004), **53**(2): 186-190

Adv Immunol (1998), **70**: 1-81

146. Nurten, R., Ustundag, I., Sayhan, N., and Bermek, E., ADP-ribosylation of human serum proteins promoted by endogenous NAD glycohydrolase activity.
Biochem Biophys Res Commun (1994), **200**(1): 450-458

Cell (1992), **69**(6): 1051-1061

Adv Immunol (1998), **70**: 1-81

Clin Cancer Res (2002), **8**(6): 1779-1786

175. Schwarze, S. R., Hruska, K. A., and Dowdy, S. F., Protein transduction: unrestricted delivery into all cells?

179. Shibata, S., Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds.
J Korean Med Sci (2001), **16 Suppl:** S28-37

Clin Cancer Res (2005), **11**(8): 3109-3116

183. Silhol, M., Tyagi, M., Giacca, M., Lebleu, B., and Vives, E., Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
Clin Cancer Res (2002), **8**(6): 1779-1786

Science (1988), 240(4856): 1169-1176

190. Snyder, E. L., and Dowdy, S. F., Cell penetrating peptides in drug delivery.
Pharm Res (2004), 21(3): 389-393

Vaccine (1995), 13(15): 1403-1410

195. Stirpe, F., Bailey, S., Miller, S. P., and Bodley, J. W., Modification of ribosomal RNA by ribosome-inactivating proteins from plants.

Biochemistry (2002), 41(27): 8732-8741

197. Sutherland, M., Keller, J., Heisler, I., Tauber, R., and Fuchs, H., A novel molecular adapter for the site-specific trapping of immunotoxins - is it functional?
Clin Chem Lab (2001), 39(A76)

198. Sweeney, E. B., and Murphy, J. R., Diphtheria toxin-based receptor-specific chimaeric toxins as targeted therapies.

Science (1992), 257(5068): 379-382

Cancer Biol Ther (2005), 4(8): 874-882

203. Torchilin, V. P., Ramamohan, R., Weissig, V., and Levchenko, T. S., TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors.

Princess Takamatsu Symp (1984), 15: 253-258

211. vanderSpek, J., Cassidy, D., Genbauffe, F., Huynh, P. D., and Murphy, J. R., An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. *J Biol Chem* (1994), 269(34): 21455-21459

