Generation and Characterization of $K_{\text{Ca}3.1}$-transgenic mice

Inaugural-Dissertation
to obtain the academic degree
Doctor rerum naturalium (Dr. rer. nat.)
submitted to
the Department of Biology, Chemistry and Pharmacy of the
Freie Universität Berlin

by

SI, HAN

From Nanjing, China

Berlin
December 2005
1\textsuperscript{st} Reviewer: Prof. Dr. W. Saenger

2\textsuperscript{nd} Reviewer: PD. Dr. R. Köhler

Date of disputation: 01. June. 2006
CONTENTS

Summary ______________________________________________________________ I
Zusammenfassung ______________________________________________________ III
Contents ______________________________________________________________ V
Abbreviations __________________________________________________________ VIII
1. INTRODUCTION ______________________________________________________ 1
  1.1 Potassium channels ___________________________________________________ 1
  1.2 Ca\textsuperscript{2+}-sensitive K\textsuperscript{+} channels ________________________ 3
  1.3 KCa\textsubscript{3.1} channel gene and biophysics __________________________ 7
  1.4 KCa\textsubscript{3.1} channel gating ______________________________________ 9
  1.5 KCa\textsubscript{3.1} channel assembly, trafficking, targeting ________________ 9
  1.6 KCa\textsubscript{3.1} channel pharmacology _______________________________ 10
  1.7 KCa\textsubscript{3.1} channel in the vasculature ____________________________ 13
    1.7.1 KCa\textsubscript{3} channels and endothelial function ___________________ 13
    1.7.2 KCa\textsubscript{3.1} channels and EDHF-signaling ________________________ 17
  1.8 Gene targeting in the murine genome _________________________________ 18
  1.9 Aims _____________________________________________________________ 20
2. METHODS AND MATERIALS ____________________________________________ 23
  2.1 PCR amplification of the homologous DNA sequences of KCa\textsubscript{3.1} gene ________ 23
  2.2 Targeting vectors for homologous recombination in ES cells _____________ 24
  2.3 DNA preparations __________________________________________________ 28
    2.3.1 Genomic DNA preparations from cultured ES cells for PCR analysis __________ 28
    2.3.2 Genomic DNA preparations from mouse tails for PCR analysis _____________ 28
    2.3.3 Genomic DNA preparations from mouse tails for southern analysis __________ 29
    2.3.4 Small plasmid preparations __________________________________________ 29
  2.4 Sequencing of plasmid DNA __________________________________________ 30
  2.5 PCR analysis ______________________________________________________ 30
    2.5.1 Detection of homologous recombination with pTV5 targeting vector ________ 30
    2.5.2 Genotyping of transgenic mice _______________________________________ 31
    2.5.3 Detection of homologous recombination with P4 targeting vector __________ 31
  2.6 Southern analysis __________________________________________________ 33
    2.6.1 Basic principles __________________________________________________ 33
    2.6.3 DNA gel electrophoresis and blotting _________________________________ 36
2.6.4 Hybridization and autoradiography 37
2.6.5 Materials 37

2.7 RNA analysis 38
2.7.1 RNA isolation 38
2.7.2 RT-PCR 38

2.8 Cell isolation and culture 39
2.8.1 Isolation of endothelial cells 39
2.8.2 Isolation of lymphocytes 40
2.8.3 Culture of mouse embryonic fibroblasts 41
2.8.4 Culture of ES cells 42
2.8.5 Materials 44

2.9 Generation of chimeric mice from transformed embryonic stem cells 45

2.10 Mice husbandry and breeding 46

2.11 Patch-clamp experiments 46
2.11.1 Basic principles 46
2.11.2 Recording conditions for patch-clamp experiments 51
2.11.3 Data analysis 52
2.11.4 Materials 52

2.12 Blood pressure measurements 52
2.12.1 Tail-cuff experiments 52
2.12.2 Telemetry experiments 53

2.13 Pressure myography 54

2.14 Histological studies 55

2.15 Statistical analysis 55

3. RESULTS 56

3.1 Inactivation of KCa3.1 gene 56
3.1.1 Generation of the KCa3.1 knockout mouse 56
3.1.2 Genotyping of the KCa3.1 knockout mice 58

3.2 General morphological and histological characteristics of major organs of KCa3.1+ mice 65

3.3 Characterization of KCa current 68
3.3.1 Components of the KCa current in mice 68
3.3.2 Ca2+ sensitivity of KCa current in female mice 75

3.4 EDHF-mediated vasodilation in KCa3.1 transgenic mice 78

3.5 Inactivation of KCa3.1 increases systemic blood pressure 81

4. Discussion 84
4.1 Technical considerations of gene targeting experiments 84
4.2 Complete knockout of KCa3.1 channel in homozygous mutant mice 87
4.3 Phenotypes of female and male KCa3.1<sup>-/-</sup> mice 89
   4.3.1 Morphological and histological changes of major organs in KCa3.1<sup>-/-</sup> mice 89
   4.3.2 Composition of KCa currents in female and male mice 91
   4.3.3 Probable compensation of KCa currents in male KCa3.1<sup>-/-</sup> mice 92
   4.3.4 Impaired EDHF-type vasodilation in female KCa3.1<sup>-/-</sup> mice 93
   4.3.5 Blood pressure and EDHF-mediated vasodilation 96

5. REFERENCES 98
Acknowledgements 115
Publications 116