References

REFERENCES

96

REFERENCES

REFERENCES

Henneberger, C., Kirischuk, S., Grantyn, R. (2005) Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors. Neuroscience, 135(3), 749-763.

REFERENCES

REFERENCES

Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249-4258

REFERENCES

<table>
<thead>
<tr>
<th>Abbreviations and acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>Ab (mAb / pAb)</td>
<td>antibody (monoclonal / polyclonal)</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>Cy</td>
<td>cyanine (dyes)</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′, 6 diamidino-2-phenlylindole</td>
</tr>
<tr>
<td>DIV</td>
<td>days in vitro</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNQX</td>
<td>6,7-dinitroquinoxaline-2,3-dione</td>
</tr>
<tr>
<td>E</td>
<td>embryonic day</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetetic acid</td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-amino butyric acid</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GluRs</td>
<td>glutamate receptors</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>h</td>
<td>hour (s)</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxy-ethylpiperazine-N’-2-ethane sulfonic acid</td>
</tr>
<tr>
<td>kD</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>LPA</td>
<td>lysophosphatidic acid</td>
</tr>
<tr>
<td>LPP</td>
<td>lipid phosphate phosphatase</td>
</tr>
<tr>
<td>M</td>
<td>molar (moles/liter)</td>
</tr>
<tr>
<td>MAP kinase</td>
<td>mitogen-associated protein kinase</td>
</tr>
<tr>
<td>MAP2</td>
<td>microtubule-associated protein 2</td>
</tr>
<tr>
<td>MEM</td>
<td>minimum essential medium</td>
</tr>
</tbody>
</table>
mEPSC/ mIPSC: miniature excitatory/ inhibitory postsynaptic current
min: minute (s)
mg / ml: milligram / milliliter
mRNA: messenger ribonucleic acid
NCAM: neural cell adhesion molecule
NGF: nerve growth factor
NLGN (NL, NLG): neuroligin
NMDA: N-methyl-D-aspartic acid
ns: not significant
NT: neurotrophin
NT-3 / NT-4: neurotrophic factor-3 / 4
OD: optical density
P: post-natal day
p75^NTR: pan neurotrophin receptor
PA: phosphatidic acid
PAF: paraformaldehyde
PBS-CMF: phosphate-buffered saline calcium and magnesium free
PCR: polymerase chain reaction
PI3: phosphatidylinositol 3-kinase
PNS: peripheral nervous system
PO: poly-L-ornithine
PRG / LPR: plasticity-related gene / lipid phosphate phosphatase-related protein
PSD: postsynaptic density
ROI: region of interest
RNA: ribonucleic acid
RT-PCR: reverse transcriptase-polymerase chain reaction
S1P: sphingosine-1-phosphate
siRNA: small interference RNA
S-MCPG: (S)-α-methyl-4-carboxyphenylglycine
Syp I / Syn I: synaptophysin I / synapsin I
t-BDNF: transfected BDNF
TE: tris EDTA
Tris: tris (hydroxymethyl) aminomethane
Trk: tropomysin related kinase
°C: degree celcius
µg / µl / µm / µM: microgram / microliter / micrometer / micromolar
VGAT / VIAAT / VGluT: vesicular GABA / inhibitory amino acid / glutamate transporter
List of Figures

Figure 1. Model of synaptotropic guidance of dendrite growth.

Figure 2. Schematic representation of pyramidal neurons from control, autism, and Rett brains.

Figure 3. Exogenous addition of neurotrophins did not affect neuronal survival.

Figure 4. Exposure to exogenous BDNF stimulates primary dendrite formation, dendrite branching and synapse formation and reduces dendrite elongation.

Figure 5. Standard curves for the analysis of mRNA expression levels.

Figure 6. Exogenous addition of BDNF alters mRNA expression levels of the active zone proteins and receptor TrkB.

Figure 7. BDNF expression drastically changes neuronal morphology.

Figure 8. Changes in dendrite morphology within the ROI within the ROI.

Figure 9. BDNF expressing neurons have higher number of synaptic terminals than that in BDNF-deficient neurons.

Figure 10. BDNF expressing neurons receive a larger number of glutamatergic synapses.

Figure 11. BDNF expressing neurons receive a smaller number of GABAergic synapses.

Figure 12. Effects of transfected BDNF on dendrite morphology after long term expression.

Figure 13. Comparison of synaptogenesis between bdnf+/+, bdnf+/- and BDNF-transfected (t-BDNF) bdnf+/- neurons.

Figure 14. Receptor specific effects of local BDNF on dendrite elongation and branching.

Figure 15. Receptor-specific effects of BDNF expression on synapse formation.

Figure 16. Receptor-specific differential effects of BDNF expression on glutamatergic and GABAergic synapse formation.

Figure 17. BDNF regulates dendrite morphology and synapse formation through separate GluR activity-dependent and -independent pathways.

Figure 18. Scatter plots to show correlation between glutamatergic synaptic input number and dendrite morphology.

Figure 19. LPA application reduces the number of Syp I-positive terminals.

Figure 20. Quantification of the effects of overexpression of PRG-1.

Figure 21. Immunofluorescence images of primary hippocampal neurons transfected with EGFP or PRG1::EGFP.

Figure 22. Synapse-type specific effects of PRG-1 and LPA.

Figure 23. Silencing of gene expression of PRG-1 reduces synapse formation.

Figure 24. The presence of postsynaptic t-BDNF is associated with an increased fraction of glutamatergic mPSCs.

Figure 25. A schematic diagram to illustrate various routes followed by BDNF in mediating its effects on dendrite morphology and synapse formation.

Figure 26. A schematic representation of the effects of transfection of BDNF::EGFP in bdnf+/- neurons.
List of Tables

Table 1. List of antibodies.

Table 2. Comparison between added neurotrophins on their effects on dendrite morphology and synapse number after chronic exposure.

Table 3. Numerical values of slope and intercept.

Table 4. Comparison of dendrite morphology and synaptogenesis among $bdnf^{+/+}$, $bdnf^{-/-}$ and BDNF-transfected (t-BDNF) $bdnf^{-/-}$ neurons.

Table 5. Summary of the effects of neurotrophin receptor block on BDNF::EGFP-induced changes in dendrite morphology and synapse number.
Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig durchgeführt und verfasst habe. Ich habe keine anderen als die angegebenen Hilfsmittel verwendet.
Außerdem versichere ich, dass diese Dissertation an keiner anderen Universität eingereicht wurde, um ein Promotionsverfahren zu eröffnen.

Bhumika Singh
Berlin, November, 2005