PHENYLENE ETHYNYLENE FOLDAMERS:
FROM SYNTHESIS TO TUBULAR SCAFFOLDING
AND PHOTOSWITCHABLE HELICES

INAUGURAL – DISSERTATION

Zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr. rer. nat.

des Fachbereichs
Biologie, Chemie und Pharmazie
der Freien Universität Berlin

vorgelegt von
Anzar Ul Haque Khan
aus Khamgaon, Indien

im Oktober 2005
Die vorliegende Arbeit wurde in der Zeit von April 2002 bis Dezember 2004 am Institut für Chemie/Organische Chemie der Freien Universität Berlin und von Januar 2005 bis September 2005 am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr unter der Anleitung von Herrn Dr. Stefan Hecht durchgeführt.

1. Gutachter: Dr. Stefan Hecht
2. Gutachter: Prof. Dr. Rainer Haag
Tag der Disputation: 28-11-2005
Table of Contents

Acknowledgement

Chapter 1: General Introduction

- Dynamic Helical Polymers
- Stable Helical Polymers
- Foldamers
- Aim and Organization of this Thesis
- References

Chapter 2: Synthesis of Lengthy and Defect-Free Poly(meta-phenylene ethynylene)

- Introduction
- Motivation
- Monomer and Polymer Syntheses
- Polymer Characterization
- Conclusion
- Experimental
- References

Chapter 3: Synthesis of Poly(ortho-phenylene ethynylene)

- Introduction
- Motivation
- Monomer Synthesis
- Polymer Syntheses
- Polymer Characterization
- Optical Properties
- Conclusion
- Experimental
- References
Chapter 4: Intramolecular Crosslinking of Helical Folds:

A Novel Approach to Organic Nanotubes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>54</td>
</tr>
<tr>
<td>Choice of the Backbone</td>
<td>56</td>
</tr>
<tr>
<td>Backbone Synthesis</td>
<td>57</td>
</tr>
<tr>
<td>Backbone Folding</td>
<td>58</td>
</tr>
<tr>
<td>Backbone Crosslinking</td>
<td>60</td>
</tr>
<tr>
<td>Conclusion</td>
<td>65</td>
</tr>
<tr>
<td>Experimental</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td>69</td>
</tr>
</tbody>
</table>

Chapter 5: Photoswitchable Foldamer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Turn-On Helices</td>
<td>74</td>
</tr>
<tr>
<td>Turn-Off Helices</td>
<td>82</td>
</tr>
<tr>
<td>Controlling the Twist Sense of a Chiral Foldamer</td>
<td>96</td>
</tr>
<tr>
<td>Conclusion</td>
<td>101</td>
</tr>
<tr>
<td>Experimental</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>112</td>
</tr>
</tbody>
</table>

Chapter 6: Synthesis of an Amphiphilic, Non-Ionic Poly(\textit{para}-phenylene ethynylene) Derivative with a Remarkable Quantum Yield in Water

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>114</td>
</tr>
<tr>
<td>Motivation</td>
<td>115</td>
</tr>
<tr>
<td>Polymer Synthesis</td>
<td>115</td>
</tr>
<tr>
<td>Optical Properties</td>
<td>117</td>
</tr>
<tr>
<td>Conclusion</td>
<td>120</td>
</tr>
<tr>
<td>Experimental</td>
<td>121</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
</tbody>
</table>
The objective of the work presented in this thesis is to develop more efficient methods for the synthesis of artificial backbones capable to adopt a stable helical conformation in solution. The motivation for such efforts is to gain a profound understanding of the backbones’ folding behavior and to utilize the reversible helix-coil transition for tubular scaffolding and for the design of stimuli-responsive materials.

The general introduction, provided in Chapter 1, describes some representative examples of helical oligomers and polymers reported in the literature. While Chapter 2 is focused on the synthesis of high molecular weight meta-linked poly(phenylene ethynylene)s (PPE)s by a novel in-situ activation/coupling protocol, the extension of this newly developed method to the preparation of new helically folding ortho-linked PPEs is outlined in Chapter 3. In Chapter 4, the synthesis of cinnamate-based meta-linked PPEs and the first example of an intramolecular helical crosslinking reaction to furnish covalently stabilized tubular nano-objects is described. The synthesis and photoresponsive behavior of the first prototype of a photoswitchable foldamer, in which the helix-coil transition can be triggered by light, is described in Chapter 5. Finally, Chapter 6 details the synthesis of site-isolated, defect-free, and water-soluble conjugated para-linked PPEs, which display remarkably high fluorescence efficiencies in water.
Acknowledgment

I would like to express my gratitude to all those who have supported me over the past few years and contributed towards shaping this thesis.

At the outset, I thank my thesis advisor Dr. Stefan Hecht for his continuous support, not only on the professional side, but also on the personal side, and for his stimulative discussions and constant guidance throughout my graduate career. His enthusiasm and optimism for science is an invaluable source of inspiration for me.

I am grateful to Prof. Dieter Schlüter for his valuable advice and his extremely generous nature towards me.

I would like to thank my fellow labmate Marco Balbo Block for his patience and willingness to help me at any time, from filling out long german forms to making phone calls for me.

I thank Christian Kaiser for his enjoyable company and his contribution of chiral alcohol to Chapter 5.

I am grateful to Mike Peters, Ragnar Stoll, Sebastian Hartwig, and Robert Meudtner for creating a cheerful atmosphere in the group. I am happy that I had the pleasure of working with such a motivated team.

I wish to express my gratitude to Ms. Zimmerman for measuring a number of GPC’s for me and always welcoming with a nice smile. I would like to thank Dr. P. Franke for MALDI-TOF measurements and Dr. Schaefer for NMR experiments. Many thanks to Jutta Hass and Dr. Pamela Winchester for their help in administrative matters.

I would also like to thank Mr. Klaus Hauschild (MPI Mülheim) for GPC measurements and Mr. Udo Blumenthal (MPI Mülheim) for his valuable advice in the lab.

I feel a deep sense of gratitude for my parents Aejaz Khan and Najmussaheer Khanam, who believed in me, whose constant support and encouragement have made it possible for me to pursue my dreams. They inspire me to wake up everyday and go to the work with a new enthusiasm. I am deeply influenced by my brothers, Dr. Waqar Khan and Aehfaz Khan, whose love is a prized possession. They were there for me whenever I had a problem and its a nice feeling that they will be by my side whenever I need them. I am indebted to my sisters, their families and sister-in-law for their constant encouragement.
I thank Dorina Opris for her memorable company during my stay at FU Berlin and for fruitful chemistry discussions.

I thank Stephan Müller for his contribution of side chains to Chapter 6.

Last but not least, many thanks to Mihaiela Stuparu for her constant support and love.
Appendix

Symbols and Abbreviations

d doublet (NMR)
DBU 1,8-diazabicyclo[5. 4. 0]undec-7-ene
DCC dicyclohexylcarbodiimide
dd doublet of doublet (NMR)
DIB dibromoisocyanuric acid
DIPA diisopropyl ethyl amine
DMF dimethylformamide
EA elemental analysis
EI electron ionisation (MS)
FAB fast atom bombardment (MS)
Φ fluorescence quantum yield
g gram
GPC gel permeation chromatography
HPLC high-performance liquid chromatography
J coupling constant in Hz
k rate constant
m multiplet (NMR)
M molar
[M]+ molecular ion peak
MALDI-TOF matrix assisted laser desorption ionization- time of flight (MS)
m/e mass to charge ratio in mass spectrometry
mg milligram
mmol millimol
MS mass spectrometry
OEG oligo(ethylene glycol)
TEA triethyl amine
Tg triglyme monomethyl ether
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF</td>
<td>tetrahydrofurane</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TMSA</td>
<td>trimethylsilyl acetylene</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
Versicherung