6 Literaturverzeichnis

1. Albert CM, Ruskin JN.
 Risk stratifiers for sudden cardiac death (SCD) in the community: primary prevention of SCD.
 Cardiovascular research 2001; 50: 186-196

2. Rostock, KJ.
 Der plötzliche Herztod.
 Capman & Hall 1995: 19-25

3. Aspirin myocardial infarction study research group:
 A randomiced, controlled trial of aspirin in persons recovered from myocardial infarction.
 JAMA 1980; 243: 661

4. Seidl K, Lengenfelder W, Senges J.
 Der plötzliche Herztod - pathobiologisches Modell und Risikostratifikation.
 Klinikarzt 1992; 21: 114-128

5. Mines G.
 On circulating excitations in heartmuscles and their possible relation to tachycardia and fibrillation.
 Trans Royal Soc Can 1914; 4: 43-52

6. Kinoshit S.
 Mechanisms of ventricular arrhythmias: A theoretical model derived from the concepts of „electronic interaction“ and „longitudinal dissociation“.
 Am J Cardiol 1983; 52: 1350-1354
7. Constantini O, Carole D, Rosenbaum S.
Can sudden cardiac death be predicted from the T wave of the ECG?
Pace 2000; 23: 1407-1416

8. Antzelevitch CH, Wataru S, Gan-Xin Y, Serge S.
Cellular basis for QT-dispersion
J Electrocardiol 1998; 30: 168-175

9. Day CP, McComb JM, Campbell RW.
QT-Dispersion: An indication of arrhythmia risk in patients with long QT-intervals.
Br Heart J 1990; 63: 342-344

10. Puddu PE, Bourassa MG.
Prediction of sudden death from QTc interval prolongation in patients with chronic ischemic heart disease.

11. Schwartz PJ, Wolf S.
QT interval prolongation as predictor of sudden death in patients with myocardial infarction.
Circulation 1978; 57: 1074-1077

12. Cowan JC, Yusoff K, Moore M, Amos PA et al.
Importance of lead selection in QT interval measurement.
Am J Cardiol 1988; 61: 83-87

13. Zabel M, Portnoy S, Franz MR.
Electrocardiographic indexes of dispersion of ventricular repolarization: an isolated heart validation study.
J Am Coll Cardiol 1995; 25: 746-752
14. Higham PD.
Does QT-dispersion reflect dispersion of ventricular recovery?
Circulation 1995; 86 (suppl I): I-392

15. Hohnloser SH.
QT-Dispersion im Oberflächen-EKG als Parameter einer gesteigerten Vulnerabilität bei akuter Myokardischämie.
Z Kardiol 1993; 82: 678-682

16. Sahu P, Lim PO, Rana BS, Struthers AD.
QT-dispersion in medicine electrophysiological holy grail or fool's gold?
Q J Med 2000; 93: 425-431

17. Surawicz B:
Will QT-dispersion play a role in clinical decision-making?
J Cardiovasc Electrophysiol 1996; 87: 777-784

QTc dispersion predicts cardiac mortality in the elderly: the Rotterdam Study.
Circulation 1998; 97: 467-472

The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens.
Eur Heart J 1998; 19: 1391-1400

Acute psychological stress and the propensity to ventricular arrhythmias: evidence for a linking mechanism.
Eur Heart J 2000; 21: 1023-1028

21. Higham PD, Furniss SS, Campbell RW.
QT-dispersion and components of the QT interval in ischemia and infarction.
Br Heart J 1995; 73: 32-36
22. Puljevic D, Smalcelj A, Durakovic Z, Goldner V.
QT-dispersion, daily variations, QT interval adaption and late potentials as risk markers for ventricular tachycardia.
Eur Heart J 1997; 18: 1343-1349

23. Pye M, Quinn AC, Cobbe SM.
QT interval dispersion: a non invasive marker of susceptibility to arrhythmia in patients with sustained ventricular arrhythmias.
Br Heart J 1994; 71: 511-514

QT interval dispersion as a predictor of arrhythmic events in congestive heart failure. Importance of etiology.
Eur Heart J 1998; 19: 1054-1062

25. Ichkhan K, Molnar J, Somberg J.
Relation of left ventricular mass and QT-dispersion in patients with systemic hypertension.
Am J Cardiol 1997; 79: 508-511

QT and QTc dispersion are accurate predictors of cardiac death in newly diagnosed non-insulin dependent diabetes: cohort study.
BMJ 1998; 316: 745-746

27. Zabel M, Klingenhheben T, Franz MR, Hohnloser SH.
Assessment of QT-dispersion for prediction of mortality or arrhythmic events after myocardial infarction: results of a prospective, long-term follow-up study.
Circulation 1998; 97: 2543-50
28. Mortara AL.
 Autonomic nervous system dysfunction but not dispersion of ventricular repolarisation has prognostic implication in chronic heart failure.
 J Am Coll Cardiol 1997; 29: 175

29. Muller JE, Stone PH, Turi ZG, Rutherford JD et al.
 Circadian variation in the frequency of onset of acute myocardial infarction.

 Eur Heart J 2000; 21: 315-320

31. Molnar J, Rosenthal JE, Weiss JS, Somberg JC.
 Am Journal Cardiol 1997; 79: 1190-1193

32. Yetkin E, Senen K, Ileri M, Atak R et al.
 Diurnal variation of QT-dispersion in patients with and without coronary artery disease.
 Angiology 2001; 52: 311-316

 Circadian variations of QTc dispersion: is it a clue to morning increase of sudden cardiac death?
 Clin Cardiol 1999; 22: 103-106

34. Ishida S, Nakagawa M, Fujino T, Yonemochi H et al.
 Circadian variation of QT interval dispersion: Correlation with heart rate variability.
 J Electrocardiol 1997; 30: 205-210
35. Bayes de Luna A, Coumel P, Leclercq JF.
Ambulatory sudden cardiac death: mechanisms of production of fatal
arrhythmia on the bases of data from 157 cases.
Am Heart J 1989; 117: 151-159

Circadian variation of sustained ventricular tachyarrhythmias terminated by
appropriate shocks in patients with an implantable cardioverter defibrillator.
Am Heart J 1995; 130: 79-84

37. Willich SN, Maclure M, Mittleman M, Arntz HR et al.
Sudden cardiac death. Support for a role of triggering in causation.
Circulation 1993; 87: 1442- 1450

38. Muller JE, Ludmer PL, Willich SN, Tofler GH et al.
Circadian variation in the frequency of sudden cardiac death.
Circulation 1987; 75: 131-138

Circadian variation in the incidence of sudden cardiac death in the
Framingham Heart Study Population.
Am J Cardiol 1987; 60: 801-806

40. Tofler GH, Brezinski D, Schafer Al, Czeister CA et al.
Concurrent morning increase in platelet aggregability and the risk of
myokardial infarction and sudden cardiac death.

41. MullerJE, Tofler GH, Stone PH.
Circadian variation and triggers of onset of acute cardiovascular disease.
Circulation 1989; 79: 733-743
42. Englund A, Behrens S, Wegscheider K, Rowland E.
Circadian variation of malignant ventricular arrhythmias in patients with ischemic and nonischemic heart disease after cardioverter defibrillator implantation.
J Am Coll Cardiol 1999; 34: 1560-1568

43. Peters RW, Muller JE, Goldstein S, Byington R et al.
Propranolol and the morning increase in the frequency of sudden cardiac death (BHAT study).
Am J Cardiol 1989; 63: 1518-1520

44. Behrens S, Ehlers C, Bruggemann T, Ziss W et al.
Modification of the circadian pattern of ventricular tachyarrhythmias by betablocker therapy.
Clin Cardiol 1997; 20: 253-257

45. Takebayashi K, Sugita R, Tayama K, Aso Y.
The connection between QT-dispersion and autonomic neuropathy in patients with type 2 diabetes.
Exp Clin Endocrinol Diabetes 2003; 111: 351-357

46. Padmanabhan S, Silvret H, Amin J, Pai RG.
Prognostic value of interval and QT-dispersion in patients with left ventricular systolic dysfunction: Results from a cohort of 2265 patients with an ejection fraction of 40%.
Am Heart J 2003; 145: 132-138

47. Brendorp B, Elming H, Jun L, Kober L et al.
QT-dispersion has no prognostic information for patients with advanced congestive heart failure and reduced left ventricular systolic function.
Circulation 2001; 103: 831-835
48. El-Sherif N.
Reentrant mechanisms in ventricular arrhythmias
In: Zipes DP, Jalife J. Cardiac Electrophysiology: From cell to bedside.

49. Shibata N, Chen PS, Dixon EG, Wolf PD et al.
Epicardial activation after unsuccessful defibrillation shocks in dogs

50. Allessie MA, Bonke FI, Schopman FJ.
Circus movement in rabbit atrial muscle as a mechanism of tachycardia; II: the
role of nonuniform recovery of excitability in the occurrence of unidirectional
block, as studied with multiple microelectrodes.
Circ Res 1976; 39: 168-177

51. Watanabe Y, Dreifus LS.
Cardiac arrhythmias: Electrophysiological basis for clinical interpretation.
Orlando, Fla: Grune Stratton Inc 1977

52. Fabritz CL, Kirchhof PF, Behrens S, Zabel M et al.
Myocardial vulnerability to T wave shocks: relation to shock strength, shock
coupling interval, and dispersion of ventricular repolarization.
J Cardiovasc Electrophysiol 1996; 7: 231-242

53. Behrens S, Franz MR.
Substrate-trigger interactions: Role of ventricular repolarization.
In: Sudden cardiac death: Past, present, and future

54. Malik M, Velislav N, Batchvarov N.
Measurement, interpretation and clinical potential of QT-dispersion.
J Am Coll Cardiol 2000; 36: 1749-1766
55. Kors JA, van Herpen G, van Bemmel JH.
QT-dispersion as an attribute of T-loop morphology.
Circulation 1999; 99: 1458-1463

56. McLaughlin NB, Campbell RW, Murray A.
Comparison of automatik QT measurement techniques in the normal 12 lead electrocardiogram.
Br Heart J 1995; 74: 84-89

57. Xue Q, Reddy S.
Algorithms for computerized QT analysis.
J Electrocardiol 1998; 30: 181-186

58. Malik M, Batchvarov VN.
Measurement, Interpretation and clinical potential of QT-dispersion.
J Am Coll Cardiol 2000; 36: 1749-1766

59. Brüggemann T, Eisenreich S, Behrens S.
Continuous QT interval measurements from 24-hour electrocardiography and risk after myocardial infarction.
Ann Noninvasive Electrocardiol 1997; 2: 264-273

60. Faisandier Y, Courville J, De Nomazy J.
Validation of a new algorithm for automatic QT analysis on holter system.
Herzschrittmacher 1992; 12: 71-72

61. McLaughlin NB, Campbell RW, Murray A.
Accuracy of four automatic QT measurement techniques in cardiac patients and healthy subjects.
Heart J 1996; 76: 422-426