References

A first record of milk lameness (chronic hypophosphataemia) in buffaloes in Egypt.

Evaluation of fatty infiltration of the liver in dairy cattle through digital analysis of hepatic ultrasonograms.
Vet. Radiology & Ultrasound, 35, 120 - 123

Ultrasonographic features of diffuse hepatocellular disorders in dairy cattle.

Comparative evaluation of fatty infiltration of the liver in dairy cattle by using blood and serum analysis, ultrasonography and digital analysis.
Vet. Quarterly, 17, 12 – 14

Ahmed M.M.M.; Fadlalla, I.M.T. and Barri, M.E.S. (2002):
A possible association between dietary intake of copper, zinc and phosphate and delayed puberty in heifers in Sudan.
Tropical Animal Health Production, 34, 75 – 80

An evaluation of lupinosis in cattle in Western Australia.

Treatment and control of an outbreak of fat cow syndrome in a large dairy herd.
Vet. Rec., 129, 216 – 219

Effect of energy balance on hepatic capacity for oleate and propionate metabolism and triglyceride secretion.
J. Dairy Sci., 74, 132 – 139

ARC (Agricultural Research Council) (1980):
The nutrient requirements of ruminants’ livestock.
Slough, England, Commonwealth Agri. Bureaux

Baker, M.L. and Dalrymle, G.V. (1978):
Biological effects of diagnostic ultrasound.
Radiology J., 126, 479 – 483

Bell, A. W. (1980): Lipid metabolism in liver and selected tissues and in the whole body of ruminant animals. Progress lipid research, 18, 117-164

Ultrasound-guided percutaneous portocentesis in 21 cows.
Vet. Rec., 147, 623 – 626

Phosphorus deficiency in a dairy herd.

Body condition scores in dairy cows: Associations with metabolic and endocrine changes in healthy dairy cows.

Controlling metabolic diseases
Tri-state dairy nutrition conference, April, 1-9

Association between neutrophil function and periparturient disorders in cows.

Call, J.W.; Butcher, J. E.; Shupe, J. L.; Blake, J.T. and Olson, A.E. (1986):
Dietary phosphorus for beef cows.

Care, A.D.; Barlet, J.P. and Abdel-Hafeez, H.M. (1980):
Calcium and phosphate homeostasis in ruminants and its relationship to the actiology and prevention of parturient paresis.

Special veterinary pathology

Hepatic lipidosis in dairy cattle.
http://www.addl.purdue.edu/newsletters/2003/spring/hids.shtml/

Histological measurements of fat content of liver of dairy cows.
J. Comp. Pathol., 95, 437-441

Serum liver enzymes and histological changes in calves with chronic delayed senecio jacobaea toxicosis.
Assessment of blood neutrophils burst activity in dairy cows during the period of parturition.

Dirksen, G. (1967):
Gegenwärtiger Stand der Diagnostik, Therapie und Prophylaxe der Dislocatio abomasi sinistra des Rinders.
Dtsch. Tierärztl. Wschr., 46, 625 – 633

Innere Medizin und Chirurgie des Rindes.
Blackwell Verlag, Berlin, Paul Parey, 4th Ed, 230-235

Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1, 3-Butanediol.
J. Dairy Sci., 75, 1622-1634

Ellison, R.S.; Young, B.J. and Read, D.H. (1986):
Bovine post-parturient haemoglobinuria: two distinct entities in New Zealand.
New-Zeal Vet. J., 34, 7 – 10

Low phosphorus intakes by beef sucklers cows in late pregnancy and early lactation.
Br. Vet. J., 145, 141-147

Variation of inorganic phosphorus in blood plasma and milk of lactating cows.
J. Dairy Sci., 65, 760-763

Hypophosphatemia (cause and clinical consequences).
JAVMA, 3, 149 – 159

Calcium and Phosphate metabolism in Tietz NW .
Fundamental of clinical chemistry, Philadelphia: Saunders 705 – 728

Comparison of biochemical and histological methods of estimating fat content of liver of dairy cows.
Res. Vet. Sci., 34, 245-248

Hematological and biochemical findings in bovine postparturient haemoglobinuria and the accompanying Heinz body anemia.
Hepatic lipidosis from dietary restriction in non lactating cows.
JAVMA, 18, 223 – 224

Relationship of hepatic lipidosis to health and performance in dairy cattle.
JAVMA, 188, 845 - 850

Goff, J.P. (2000):
Pathophysiology of calcium and phosphorus disorder.

Goff, J.P. and Horst, R.L. (1997):
Physiological changes at parturition and their relationship to metabolic disorders.
J. Dairy Sci., 80, 1260 -1268

Methodological aspects of the microscopy of bovine liver biopsies.
J. Comp. Pathol., 92, 567 - 578

Fatty infiltration of liver in spontaneously ketotic dairy cows.
J. Dairy Sci., 66, 2320 – 2328

Estrogen induction of fatty liver in dairy cattle.
J. Dairy Sci., 73, 1537

Etiology of lipid related metabolic disorders in periparturient dairy cattle.
J. Dairy Sci. 76 3882 – 3896

The influence of multiple liver biopsies on hematological and serum biochemical values of sheep.
Cornell Vet., 74, 322-330

Fuel homeostasis in the ruminant (metabolic diseases of ruminant livestock).

Hepatic lipidosis and liver function in 49 cows with displacement abomasums.
Proc. XII World Congr. Dis. of Cattle, Amsterdam, Netherlands 522 – 526

Margoles, E.; Colome, H. and Saez, C. (1988): Biochemical characteristics of subclinical ketosis in a herd of high yielding Holstein cows 1-Ketone bodies, glucose and minerals. Revista-cubana-de-ciencias- veterinarias, 19, 129 – 143

Monaghan, M.L. and Sheahan, B.J. (1987):
Liver biopsy in ragwort poisoning.
Vet. Rec., 11, 374

Fatty Cow Syndrome.
J. Dairy Sci., 59, 1625 – 1629

Clinical Investigation of a Dairy Herd with the Fat Cow Syndrome.
JAVMA, 174, 161-167

Studies on the associated effect of feeds on the utilization of nutrient from roughages.
Ind. J. Dairy Sci.,20, 5

Biochemical profiles in cows with abomasal displacement estimated by blood and liver parameters.

A study on non-invasive quantitative measurements of the degree of fatty metamorphosis in the liver.

Sonography of the liver, gall bladder and spleen.
Small Animal Practice, 15, 1123 – 1148

Oetzel, R.G. (2001):
Ketosis and hepatic lipidosis in dairy herds.
American Association of bovine practitioners 34th Annual convention, September 11-12

Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver.

Bovine postparurient hemoglobinemia: hypophosphatemia and metabolic disorder in red blood cells.
Hemolytic anemia and red blood cell metabolic disorder attributable to low phosphorus intake in cows.

Decrease serum apolipoprotein B-100 and A-I concentrations in cows with ketosis and left displacement of the abomasums.
Am. J. Vet. Res., 58, 121-125

Osborne, T.B. and Mendel, L.B. (1918):
The inorganic element in nutrition.
Biochemical Chemistry, 33, 433 – 456

Diagnosis and control of the development of hepatic steatosis in dairy cows in the postparturient period.

Parturient haemoglobinuria in buffaloes.
Tropical Animal Health Production, 30, 209 – 215

A species comparison of liver slice synthesis and secretion of triglycerol from non esterified fatty acids in media.
J. Anim. Sci., 68, 1398 – 1399

An evaluation of transovarian uptake of metabolites using arterio-venous difference methods in dairy cattle.

Veterinary Medicine Text book

Rantanen, N.W. (1986):
Diseases of the liver.
Equine Practice, 2, 105 – 114

Post surgical convalescence of dairy cows with left abomasal displacement in relation to fatty liver.
Schweiz. Arch. Tierheilkunde, 138, 361 – 368
Total serum bile acid concentration in dairy cows with fatty liver and liver failure.
Dtsch. Tierarztl. Wschr., 106, 26-29

Fat cow syndrome in high performance cows-a topical problem in animal production.
Internationale Agrarindustrie Zeitschrift, 2, 143 – 145

Reid, I.M. (1986):
Fat cow syndrome and subclinical fatty liver.
In: Howard J.C (Hrsg): Current Veterinary therapy in food animal practice 1st Ed., 324 – 326

The pathology of postparturient fatty liver in high-yielding dairy cows.
Investigative and Cellular Pathol., 3, 237 – 249

Peripheral leucocytes numbers and function in cows with fatty liver.
J. Pathol., 141, 515 – 516.

The relationship between post-parturient fatty liver and blood composition in dairy cows.
J. Agri. Sci. Camb, 10, 104 – 110

Hematology of subclinical fatty liver in dairy cows.
Res.Vet. Sci., 37, 63 – 65

Subclinical fatty liver in dairy cows.
Irish Vet. J., 37, 104 – 110

Calcium, phosphorus, and magnesium homeostasis.

Romeis, B. (1989):
Mikroskopische Technik
Verlag Urban & Schwarzenberg, München, Wien, 17 Auflage

Rosenberger, G. (1990):
Clinical examination of cattle.
Berlin, Hamburg, Paul Parey, 2nd Ed., 68

Zur Beurteilung des Leberfettgehaltes bei der Milchkuh.
Mh. Vet. Med., 46, 798 – 805

Diagnostik der Leberverfettung bei der Milchkuh.
Dtsch. Tierärzt. Wschr., 100, 209 – 248

Effect of long chain fatty acids on triglyceride accumulation, gluconeogenesis and ureagenesis in bovine hepatocytes.
J. Dairy Sci., 81, 728 – 739

Therapie des Lipomobilisationssyndromes der Milchkuh.
Mh. Vet. Med., 46, 563-566

Duke’s physiology of domestic animal.
Cornell University Press, 10th Ed

Technical note: A technique for multiple liver biopsies.
J. Anim. Sci., 78, 2459-2463

Differential diagnosis of chronic splenomegaly by gray-scale ultrasonography: clinical observation and digital A-scan analysis.
Br. J. Radiology, 49, 519 – 525

Theiler, A.; Green, H.H. and Du Toit, P.J. (1924):
Phosphorus in the lives industry.
J. Dept. Agri. S. Africa, 8, 460

Treacher, R.J.; Reid, I.M. and Roberts, C.J. (1986):
Effect of body condition at calving on the health and performance of dairy cows.
Anim. Prod., 43, 1 – 6

Induction of fatty liver in cows by ethionine administration and concomitant decrease of serum apolipoprotein B-100 and A-I concentration.

Underwood, E.J. (1981):
The mineral nutrition of livestock.
London, gland: CAB books, 1st Ed

