9. Appendix

9.1 References

Birnboim, H.C., and Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Research* 1979, 7: 1513-1523

Colby, S.M., King, T.B., and Reilly, J.P. Improving the resolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by exploiting the correlation between ion position and velocity. *Rapid Communications in Mass Spectrometry* 1994, 8: 865-868

Klump, H. Thermodynamic values of the helix-coil transition of DNA in the presence of quaternary ammonium salt. *Biochimica et Biophysica Acta* 1977, 475: 605-610

Orum, H., Jorgensen, M., Koch, T., Nielsen, P.E., Larsson, C., and Stanley, C.
Sequence specific purification of nucleic acids by PNA controlled hybrid selection.
Biotechniques 1995, 19: 472-480

Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Timofeev, E., Belgovski, A., and
Mirzabekov, A.
DNA sequencing by hybridization to microchip octa- and
decanucleotides extended by stacked pentanucleotides.
Nucleic Acids Research 1996, 24: 2998-3004

Light-generated oligonucleotide arrays for rapid DNA sequence analysis.
Proceedings of the National Academy of Science of the United States of America 1994, 91: 5022-5026

Peffer, N.J., Hanvey, J.C., Bisi, J.E., Thomson, S.A., Hassman, C.F., Noble, S.A., and
Babiss, L.E.
Strand-invasion of duplex DNA by peptide nucleic acid oligomers.
Proceedings of the National Academy of Science of the United States of America 1993, 90: 10648-10652

Perry-O’Keefe, H., Yao, X.W., Coull, J., Fuchs, M., and Egholm, M.
PNA pre-gel hybridization, an alternative to Southern blotting.

Poustka, A., Pohl, T., Barlow, D.P., Zehetner, G., Craig, A., Michiels, F., Ehrlich, E. et
al.
Molecular approaches to mammalian genetics. in: Cold Spring Harbor Symposium on
Harbor 1986

Toward the gene catalogue of sea urchin development: the construction and analysis
of an unfertilized egg cDNA library highly normalized by oligonucleotide fingerprinting.
Genomics 1999, 59: 122-133

Radelof, U., Hennig, S., Seranski, P., Steinfath, M., Ramser, J., Reinhardt, R.,
Poustka, A. et al.
Preselection of shotgun clones by oligonucleotide fingerprinting: an
efficient and high throughput strategy to reduce redundancy in large-scale
sequencing projects.
Nucleic Acids Research 1998, 26: 5358-5364

Ratilainen, T., Holmen, A., Tuute, E., Haaima, G., Christensen, L., Nielsen, P.E., and
Norden, B.
Hybridization of peptide nucleic acid.
Biochemistry 1998, 37: 12331-12342

9.2 Index of figures/tables

Figure 3.1	Principle of oligonucleotide fingerprinting	7
Figure 3.2	Outcome of oligonucleotide fingerprinting	7
Figure 3.3	Impact of normalization on the redundancy of EST projects	10
Figure 3.4	Principle of MALDI-TOF MS	12
Figure 3.5	Chemical structure of PNA	14
Figure 4.1	Concept of multiplexed OFP	17
Table 5.1	charge-tagged PNA set "6mer global"	23
Table 5.2	charge-tagged PNA set "6mer sub1"	24
Table 5.3	charge-tagged PNA set "6mer sub2"	24
Table 5.4	charge-tagged PNA set "6mer sub3"	25
Table 5.5	charge-tagged PNA set "7mer global"	25
Table 5.6	charge-tagged PNA set "7mer sub1"	26
Table 5.7	charge-tagged PNA set "7mer sub2"	27
Figure 7.1	Comparison of clustering quality of 8mer, 7mer, and 6mer probes	41
Figure 7.2	Impact of varying probe numbers on clustering quality	42
Figure 7.3	Impact of positive charge-tagging on PNA detection	44
Figure 7.4	Parallel detection of 40 different PNA hexamers and heptamers	45
Figure 7.5	Impact of altered individual probe concentration on hybridization	47
Figure 7.6	Impact of global probe concentration on hybridization	48
Figure 7.7	Impact of target DNA concentration on hybridization	50
Figure 7.8	Impact of the addition of formamide on hybridization	51
Figure 7.9	Impact of temperature on hybridization in the presence of formamide	53
Figure 7.10	Correlation analysis of genomic DNA clones hybridized with global PNA sets	54
Figure 7.11	Hybridization results of selected genomic DNA clones hybridized with global PNA sets	55
Figure 7.12	Correlation analysis of genomic DNA clones hybridized with PNA set "6mer sub1"	56
Figure 7.13	Hybridization results of selected genomic DNA clones hybridized with PNA set "6mer sub1"	57
Figure 7.14	Correlation analysis of genomic DNA clones hybridized with PNA set "6mer sub2"	58
Figure 7.15	Correlation analysis of cDNA clones hybridized with PNA set "6mer sub1"	59
Figure 7.16	Hybridization results of selected cDNA clones hybridized with PNA set “6mer sub1”	60
Figure 7.17	Correlation analysis of cDNA clones hybridized with PNA set “6mer sub2”	60
Figure 7.18	6-plex PNA hybridization with a PCR product immobilized on a XNA on Gold™ biochip	64
Figure 7.19	Development of nylon-based immobilization system	65
Figure 7.20	6-plex PNA hybridization with a PCR product immobilized on a metallic CAST™ slide	66
Figure 7.21	6-plex PNA hybridization with a PCR product immobilized on PAMAM functionalized surfaces	67
Figure 7.22	Comparison of DNA microarrays hybridized with a fluorescent DNA probe	69
Figure 7.23	Numeric analysis of fluorescence DNA hybridization results	70
9.3 Abbreviations

A
app
BLAST
bp
C
°C
cDNA
cm
Da
dATP
dCTP
dGTP
DNA
DTT
dTTP
EDTA
EST
G
h
kb
m/z
MALDI
min
mL
mM
MPIMG
mRNA
MS
MTP
µg
µL
µM
NCBI
nM

adenine
approximately
basic local alignment search tool
base pairs
cytosine
degree Celsius
complementary DNA
centimeter
Dalton
2'-deoxyadenosine 5'-triphosphate
2'-deoxycytidine 5'-triphosphate
2'-deoxyguanosine 5'-triphosphate
deoxyribonucleic acid
dithiothreithole
2'-deoxythymidine 5'-triphosphate
ethylendiamine tetraacetic acid
expressed sequence tag
guanine
hour
kilo base pairs
mass-to-charge ratio
matrix-assisted laser desorption/ionization
minutes
milliliter
millimoles per liter
Max-Planck-Institute for Molecular Genetics
messenger RNA
mass spectrometry
microtiter plate
microgram
microliter
micromoles per liter
National Center of Biotechnology Information
nanomoles per liter
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OFP</td>
<td>oligonucleotide fingerprinting</td>
</tr>
<tr>
<td>p.a.</td>
<td>pro analysi</td>
</tr>
<tr>
<td>PAMAM</td>
<td>polyamidoamine</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PNA</td>
<td>peptide nucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RZPD</td>
<td>Deutsches Ressourcenzentrum für Genomforschung</td>
</tr>
<tr>
<td>SAGE</td>
<td>serial analysis of gene expression</td>
</tr>
<tr>
<td>SAM</td>
<td>self-assembled monolayer</td>
</tr>
<tr>
<td>SBH</td>
<td>sequencing by hybridization</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecylsulfate</td>
</tr>
<tr>
<td>sec</td>
<td>seconds</td>
</tr>
<tr>
<td>SNP</td>
<td>single-nucleotide polymorphism</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>melting temperature</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
<tr>
<td>TEACl</td>
<td>tetraethylammonium chloride</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethyl-1,2-diaminomethane</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TMACl</td>
<td>tetramethylammonium chloride</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
9.4 Curriculum Vitae

Personal Details

Name: Oliver Bauer
Academic title: Diplom-Biochemiker
Nationality: German
Date of Birth: 26.12.1973
Place of Birth: Berlin, Germany

Scientific Education

since 06/00
Ph.D. thesis:
“Technology development for Oligonucleotide Fingerprinting: applying multiplexed PNA hybridizations and MALDI-TOF mass spectrometry detection”, Max-Planck-Institute for Molecular Genetics, Department Prof. Dr. H. Lehrach, Berlin, Germany

04/94 – 03/98/05/99 – 05/00
Studies of Biochemistry at “Freie Universität Berlin”, degree: “Diplom-Biochemiker”
Diploma thesis:
“Functional analysis of differentially expressed genes in the embryonic development of Danio Rerio”, Max-Planck-Institute for Molecular Genetics, Department Prof. Dr. H. Lehrach, Berlin, Germany

04/98 – 04/99
Community service in the field of hematologic/oncologic research at Charité/Campus Virchow-Klinikum, Berlin, Germany

10/96 – 07/97
Visiting studies of Biochemistry at St. Anne’s College, University of Oxford, England

06/93
“Abitur”, Werner-von-Siemens-Gymnasium, Berlin, Germany
9.5 Publications

9.5.1 Articles/Book chapters

Klein, A., Miera, O., Bauer, O., Golfier, S., and Schriever, F. Chemosensitivity of B-cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair. *Leukemia* 2000, 14: 40-46

9.5.2 Poster presentations

“Oligonucleotide fingerprinting by multiplex PNA hybridization and MALDI-TOF-MS”, EuroBiochips, 2002, Berlin, Germany

“Oligonucleotide fingerprinting by multiplex PNA hybridization and MALDI-TOF-MS”, German Human Genome Meeting (DHGP), 2001, Braunschweig, Germany

“Towards multiplexed oligonucleotide fingerprinting by the use of MALDI-TOF-MS”. German Human Genome Meeting (DHGP), 2000, Heidelberg, Germany