5. REFERENCES

Berenson, J.R., (2001)

Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. *Arch Biochem Biophys*, **373**: 231-41.

Dosing regimens and main adverse events of bisphosphonates. *Semin Oncol*, **28**: 49-53.

bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. *Cell*, **74**: 597-608.

Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. *Cancer Res*, **60**: 2949-54.

Dermatology (3rd edition) *Springer, Berlin*

Cheer, S.M. and Noble, S., (2001)
Zoledronic acid. *Drugs*, **61**: 799-805

Cellular uptake of bisphosphonates: localisation using fluorescently-labelled alendronate.*Bone*, **17**: 599

Chlebowski, R.T., (2001)

Coleman, R.E., (2001)

Coleman, R.E. and Seaman, J.J., (2001)

Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. *J Bone Miner Res*, **15**: 1467-76.

David, P. and Baron, R., (1995)

Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. *J Bone Miner Res*, **14**: 2048-56.

Diel, I.J., (2001)

RT-PCR for tyrosinase-mRNA-positive cells in peripheral blood: evaluation strategy and correlation with known prognostic markers in 123 melanoma patients. *Invest Dermatol, 110*(3):263-7

Fleisch, H., (2001)

Gillies, R.J., Didier, N. and Denton, M., (1986)

Green, J.R., (2001)

Green, J.R., Muller, K. and Jaeggi, K.A., (1994)

Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. *Bone*, 29: 553-9.

Hall, D.G. and Stoica, G., (1994)

Hiraga T., Williams P. J., Mundy G. R. and Yoneda T., (2001)

Jung A, Bisaz S, Fleish H, (1973)
The biding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. *Calcif Tissue Res*, 11: 269-80

Lin, J.H., (1996)

Müller, M., Green, J.R., Fabbro, D.,(1996)
The bisphosphonate pamidronate inhibits the growth of a murine myeloma cell line in syngeneic mice [abstract]. Blood, 88:2333

Mundy, G.R., Yoneda, T. and Hiraga, T., (2001)
Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment. Semin Oncol, 28: 35-44.

References

Therapie der Hautkrankheiten, (2nd edition) Springer, Berlin

Paterson, A.H., (2001)

Perez, E.A., (2001)

Pruitt, K. and Der, C.J., (2001)

Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during
apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-

Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic

The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro. *British J
Cancer*, (in print)

Rogers, M.J., Brown, R.J., Hodkin, V., Blackburn, G.M., Russell, R.G. and Watts, D.J.,
(1996)
Bisphosphonates are incorporated into adenine nucleotides by human aminoacyl-tRNA

Rogers, M.J., Frith, J.C., Luckman, S.P., Coxon, F.P., Benford, H.L., Monkkonen, J.,

Rogers, M.J., Gordon, S., Benford, H.L., Coxon, F.P., Luckman, S.P., Monkkonen, J. and

Rogers, M.J., Xiong, X., Brown, R.J., Watts, D.J., Russell, R.G., Bayless, A.V. and Ebetino,
Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of
bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. *Mol

Russell, R.G., Rogers, M.J., Frith, J.C., Luckman, S.P., Coxon, F.P., Benford, H.L.,
The pharmacology of bisphosphonates and new insights into their mechanisms of action. *J Bone

Saarto, T., Blomqvist, C., Virkkunen, P. and Elomaa, I., (2001)
Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-
positive breast cancer patients: 5-year results of a randomized controlled trial. *J Clin Oncol*, 19:
10-7.

Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice. *Int J Cancer*, **77**: 279-85.

Bisphosphonates induce apoptosis in human breast cancer cell lines. *British Journal of cancer*, **82**: 1459-68

A newly developed bisphosphonate, YM529, is a potent apoptosis inducer of human myeloma cells. *Leuk Res*, **25**: 77-83.

[Bisphosphonates inhibit matrix metalloproteinases--a new possible mechanism of action]. *Duodecim*, **115**: 13-5

Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci USA*, **76**: 4350-4.

Tripathy, D., (2001)

The effects of nitrogen-containing bisphosphonates on human epithelial (Caco-2) cells, an *in vitro* model for intestinal epithelium. *J Bone Miner Res*, **14**: 784-91.

Structural requirements for bisphosphonate actions *in vitro*. *J Bone Miner Res*, **9**: 1875-82.

Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors. *Bone*, **30**: 64-70.

Van Poznak, C., (2001)
How are bisphosphonates used today in breast cancer clinical practice? *Semin Oncol*, **28**: 69-74.

Vasikaran, S.D., (2001)

