7. LITERATUR

A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole
formation in HEp-2 cells.
FEMS Microbiology Letters 121, 31-34

The bceT gene of Bacillus cereus encodes an enterotoxic protein.
Microbiology 141, 983-988

A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus.
FEMS Microbiology Letters 129, 17-20

Incidence of Bacillus cereus in milk and some milk products.
Journal of Food Protection 46, 126-128

AHMED, R., SANKAR-MISTRY, P., JACKSON, S., ACKERMANN, H.-W., KASANTIYA,
Bacillus cereus phage typing as an epidemiological tool in outbreaks of food poisoning.
Journal of Clinical Microbiology 33, 636-640

ANDERSON, M.A., MIKKOLA, R., HELI, J., ANDERSON, M.C., SALKINOJA-
A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related
depsipeptide ionophores.
Applied and Environmental Microbiology 64, 1338-1343

Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of
small-subunit-ribosomal RNA sequences.
Letters in Applied Microbiology 13, 202-206

Evidence for increased thermostability of Bacillus cereus enterotoxin in milk.
Journal of Food Protection 58, 443-445

Bacillus cereus in infant foods and dried milk products.
International Journal of Food Microbiology 23, 1-15

Staphylococcus aureus und Bacillus cereus in Milchprodukten.
Deutsche Molkerei Zeitung 49, 1594-1602

BEECHER, D.J., LEE WONG, A.C. (1994):
Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic
vascular permeability factor from Bacillus cereus.
Infection and Immunity 62, 980-986

BEECHER, D.J., MACMILLAN, J.D. (1991):
Characterization of the components of hemolysin BL from Bacillus cereus.
Infection and Immunity 59, 1778-1784
Enterotoxic activity of hemolysin BL from Bacillus cereus.
Infection and Immunity 63, 4423-4428

Biological characterization and aerological identification of Bacillus cereus diarrhoeal factor.
Netherlands Milk and Dairy Journal 47, 105-120

Classification and identification of endospore-forming bacteria.
Journal of Applied Bacteriology Symposium Supplement 76, 1-8

High-yield preparation of isolated rat liver parenchymal cells.
The Journal of Cell Biology 43, 506-520

Bacillus cereus - ein Risikofaktor in Lebensmitteln.
Archiv für Lebensmittelhygiene 49, 90-96

BILLING, E., CUTHBERT, W.A. (1958):
"Bitty" cream: The occurrence and significance of Bacillus cereus spores in raw milk supplies.
Journal of Applied Bacteriology 21, 65-78

BILLING, E., LUCKHURST, E.R. (1957):
A simplified method for the preparation of egg yolk media.
Journal of Applied Bacteriology 20, 90

Heat resistance of ileal loop reactive Bacillus cereus strains isolated from commercially canned food.
Applied Microbiology 30, 943-945

Arbitrairy primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis, serovars and strains.
Applied and Environmental Microbiology 59, 114-119

BROWN, R.W., SCHERER, R.K. (1957):
A report on two cases of acute mastitis caused by Bacillus cereus.
Cornell Veterinarian 47, 226-240

Differential diagnosis of Bacillus cereus, Bacillus anthracis, and Bacillus cereus var. mycoides.
None Specified 499-509

Evaluation of the Oxoid BCET-RPLA kit for the detection of Bacillus cereus diarrheal enterotoxin as compared to cell culture cytotonicity.
Journal of Food Protection 55, 440-443

FOEGEDING, P.M., BERRY, E.D. (1997):
Cold temperature growth of clinical and food isolates of Bacillus cereus.
Journal of Food Protection 60, 1256-1258

Comparative cataloging of 16S ribosomal ribonucleic acid: Molecular approach to procaryotic systematics.
International Journal Of Systematic Bacteriology 27, 44-57

Spores in milk: Problems associated with UHT processing.
Journal of Applied Bacteriology 33, 180-191

GERETEN, B. (1993):
The OXOID Manual.
Handbuch, 5. aktualisierte deutsche Ausgabe S. 450

GHOSH, A.C. (1978):
Prevalence of Bacillus cereus in the faeces of healthy adults.
Journal of Hygiene, Camb. 80, 233-236

Ed. Baltimore: The Williams & Wilkins Company. pp. 529-545

GILBERT, R.J. (1979):
Bacillus cereus gastroenteritis.
Food-borne Infections and Intoxications, Academic Press New York 495-518

GILBERT, R.J., KRAMER, J.M. (1984):
Bacillus cereus enterotoxins: Present status.
Biochemical Society Transactions 12, 198-199

GILBERT, R.J., PARRY, J.M. (1977):
Serotypes of Bacillus cereus from outbreaks of food poisoning and from routine foods.
Journal of Hygiene, Camb. 78, 69-74

A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: Nucleotide sequence and genetic linkage.
Journal of Bacteriology 171, 744-753

Defined conditions for synthesis of Bacillus cereus enterotoxin by fermenter-grown cultures.
Applied and Environmental Microbiology 32, 400-404

Alteration of vascular permeability in rabbits by culture filtrates of Bacillus cereus and related species.
Infection and Immunity 10, 299-303

Bacillus cereus: Food poisoning organism. A review.
J. Milk Food Technol. 35, 213-227
Journal of Food Protection 60, 442-446

The effect of Ca++ and Mg++ on the action of Clostridium perfringens enterotoxin on Vero cells.
Acta path. microbiol. scand. Sect. B 93, 41-48

Bacillus cereus and its toxins.
Journal of Applied Bacteriology Symposium Suppl. 76, 61S-66S

Evidence for a further enterotoxin complex produced by Bacillus cereus.
FEMS Microbiology Letters 141, 145-149

Enterotoxin from Bacillus cereus: Production and biochemical characterization.
Bulletin of the IDF 287, 38-41

Sphingomyelinase is part of the 'enterotoxin complex' produced by Bacillus cereus.
FEMS Microbiology Letters 110, 97-100

Toxin production by psychrotrophic Bacillus spp. present in milk.
Journal of Food Protection 53, 790-792

Foodborne illness caused by Bacillus spp. other than B. cereus and their importance to the dairy industry.
University of Guelph 1-12

GRIFFITHS, M.W., PHILLIPS, J.D. (1990):
Strategies to control the outgrowth of spores of psychrotrophic Bacillus spp. in dairy products. 1. Use of naturally-occurring materials.
Milchwissenschaft 45, 621-626

Spore-forming bacteria in milk. II. Effect of carbon dioxide addition on heat activation of spores of Bacillus species.
Milchwissenschaft 39, 144-146

Pathogenicity testing of heat resistant mesophilic sporeformers from UHT-milk.
Kieler Milchwirtschaftliche Forschungsberichte 48, 151-161

HAUGE, S. (1955):
Food poisoning caused by aerobic spore-forming Bacilli.
Symposium on Food Microbiology and Public Health: Paper XIII 591-595

LAMANNA, C., EISLER, D. (1960): Comparative study of the agglutinogens of the endospores of Bacillus anthracis and Bacillus cereus. None Specified 79, 435-441

LAMANNA, C., JONES, L. (1961): Antigenic relationship of the endospores of Bacillus cereus-like insect pathogens to Bacillus cereus and Bacillus anthracis. None Specified 81, 622-625

Entkeimen von Milch und Milchprodukten unter besonderer Berücksichtigung der
Verwertung des Keimkonzentrates.
Die Molkerei-Zeitung Welt der Milch 43, 949-957

Contamination of pasteurized milk by Bacillus cereus.
Journal of Dairy Science, Suppl. 1 80, 109

Use of pulsed-field gel electrophoresis to investigate a pseudo-outbreak of Bacillus cereus
in a pediatric unit.
Journal of Clinical Microbiology 35, 1533-1535

Identification of Bacillus strains using the API system.
Journal of General Microbiology 130, 1871-1882

LUND, T., GRANUM, P.E. (1996):
Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated
after a foodborne outbreak.
FEMS Microbiology Letters 141, 151-156

MAJOR, P., RIMANOCZY, I., ORMAY, L., BÉLTEKY, A. (1979):
Characteristics of B. cereus strains isolated from various foods.
Elelmezési Ipar 33, 314-315

Ultra-high temperature effects on selected Bacillus species.
Journal of Dairy Science 49, 1367-1370

Subtyping of Bacillus cereus by total cell protein patterns and arbitrary primer polymerase
chain reaction.
European Journal of Epidemiology 12, 309-314

A rapid PCR-based DNA test for enterotoxic Bacillus cereus.
Applied and Environmental Microbiology 64, 1634-1639

MCCLUNG, L.S., HEIDENREICH, P., TOABE, R. (1946):
A medium for the nagler plate reactions for the identification of certain Clostridia.
None Specified 751-752

Psychrotrophic Bacillus spp. in fluid milk products: A review.
Journal of Food Protection 54, 969-979

MELLING, J., CAPEL, B.J. (1978):
Characteristics of Bacillus cereus emetic toxin.
FEMS Microbiology Letters 4, 133-135

Bacillus cereus enterotoxin and its production in different foods.
Journal of Food Science and Technology 20, 223-227

SHEHATA, T.E., COLLINS, E.B. (1972):
Sporulation and heat resistance of psychrophilic strains of Bacillus.
Journal of Dairy Science 55, 1405-1409

SHINAGAWA, K. (1993):
Serology and characterization of toxigenic Bacillus cereus.
Netherlands Milk and Dairy Journal 47, 89-103

Improved methods for purification of an enterotoxin produced by Bacillus cereus.
FEMS Microbiology Letters 80, 1-6

Production of the vacuolation factor of Bacillus cereus isolated from vomiting-type food poisoning.
J. Vet. Med. Sci. 54, 443-446

Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus.
FEMS Microbiology Letters 130, 87-90

SIEVERS, O., ZETTERBERG, B. (1940):
A preliminary investigation into the antigenic characters of spore-forming, aerobic bacteria.
None Specified 45-56

SINGH, R.S., BATISH, V.K., PARKASH, O., RANGANATHAN, B. (1984):
Toxigenic Bacillus cereus var. fluorescence in human milk.
Journal of Dairy Science 67, 513-517

Application of pyrolysis mass spectrometry to the investigation of outbreaks of food poisoning and non-gastrointestinal infection associated with Bacillus species and Clostridium perfringens.
International Journal of Food Microbiology 17, 57-66

Effect of pasturing on the incidence of Bacillus cereus spores in raw milk.
Int. Dairy Journal 7, 201-205

The use of Bacillus diarrhoeal enterotoxin (BDE) detection using an ELISA technique in the confirmation of the aetiology of Bacillus-mediated diarrhoea.
Journal of Applied Microbiology **82**, 677-682

TATZEL, R. (1994):
Untersuchungen der Bacillenflora in Milchproben aus verschiedenen Verarbeitungsstufen mit klassischen und molekularbiologischen Methoden.
Die Molkerei-Zeitung Welt der Milch **48**, 725-730

TAYLOR, A.J., GILBERT, R.J. (1975):
Bacillus cereus food poisoning: A provisional serotyping scheme.

Occurrence and characterization of (psychrotropic) Bacillus cereus on farms in the Netherlands.
Netherlands Milk and Dairy Journal **49**, 125-138

Sporicidal effect of disinfectants on Bacillus cereus isolated from the milk processing environment.
International Biodeterioration & Biodegradation **421**, 421-430

Incidence and characterization of Bacillus cereus in two dairy processing plants.
Netherlands Milk and Dairy Journal **50**, 479-492

Isolation and characterisation of Bacillus cereus from pasteurised milk in household refrigerators in the Netherlands.
International Journal of Food Microbiology **34**, 307-318

Isolation and some properties of an enterotoxin produced by Bacillus cereus.
Infection and Immunity **43**, 887-894

Worldwide surveillance of foodborne disease: The need to improve.
Journal of Food Protection **59**, 82-92

Selective blockade of cytotoxic drug-induced emesis by 5-HT₃ receptor antagonists in Suncus murinus.
Japan. J. Pharmacol. **55**, 107-113

TORRES-ANJEL, M.J. (1981):
A new look at Bacillus cereus and other potentially pathogenic spore formers in breast milk substitutes.
Pro. 8th int. Symp. of the world assoc. of the vet. food hygienists, Ed. J. D. Collins, ETA Publ. LTD **111-113**
Natural protein toxins affecting cutaneous microvascular permeability.
J. Toxicol. - Toxin Reviews 11, 193-239

Bacillus cereus toxins.
Pharmacotherapy 13, 453-505

Severe clinical conditions associated with Bacillus cereus and the apparent involvement of
exotoxins.
Journal of Clinical Pathology 32, 289-293

Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of
Bacillus cereus.
The American Journal of Clinical Nutrition 32, 219-228

Media for the detection and enumeration of Bacillus cereus in foods: A review.
International Journal of Food Microbiology 17, 85-99

VAN NETTEN, P., VAN DE MOOSDIJK, A., VAN HOENSEL, P., MOSSSEL, D.A.A.,
PERALES, I. (1990):
Psychrotrophic strains of Bacillus cereus producing enterotoxin.
Journal of Applied Bacteriology 69, 73-79

Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum
growth temperature, and fatty acid analysis.
Journal of Applied Bacteriology 70, 315-324

VON LUDWIG, K. (1971):
Bacillus cereus als Ursache einer Lebensmittelintoxikation.
Archiv für Lebensmittelhygiene 104-107

Incidence of Bacillus cereus in milk powder.
South African Journal of Dairy Technology 10, 47-50

Gas chromatographic analysis of cellular fatty acids in the identification of foodborne
bacteria.
Journal of Food Protection 58, 1234-1240

WEIDLICH, N. (1961):
Über Infektionen der Milchdrüse des Rindes mit Bac. cereus.
None Specified 816-818

WHO SURVEILLANCE PROGRAMME FOR CONTROL OF FOODBORNE INFECTIONS
AND INTOXICATIONS IN EUROPE (1992):
Institute of Veterinary Medicine - Robert von Ostertag-Institute, Berlin 25-29

Gesetze und Verordnungen

Ergebnisse aus dieser Arbeit wurden bei folgenden Gelegenheiten vorgestellt:

Zum Vorkommen von Bacillus cereus in einem Milchtrocknungsbetrieb - Phänotypische Charakterisierung der isolierten Stämme.

Toxinbildungsvermögen von Bacillus cereus-Stämmen aus einem Milchtrocknungsbetrieb.

Toxin production of Bacillus cereus isolates from a milk powder plant.

Toxin production of Bacillus cereus isolates from a milk powder plant.

Toxin production of Bacillus cereus isolates from a milk powder plant.
Proc. Part 2, 40-44