Polyhedral Combinatorics of Coxeter Groups
Labbé, Jean-Philippe

HaupttitelPolyhedral Combinatorics of Coxeter Groups
TitelvariantePolyedrische Kombinatorik von Coxetergruppen
AutorLabbé, Jean-Philippe
Geburtsort: Lac-Mégantic
GutachterGünter M. Ziegler
weitere GutachterVolkmar Welker,
Vic Reiner
Freie SchlagwörterCoxeter groups; root systems; weak order; cluster complexes; triangulations; subword complexes
DDC510 Mathematik
ZusammenfassungThis thesis presents recent developments concerning two open problems related to algebra and discrete geometry. In 1934, Harold S. M. Coxeter introduced Coxeter groups as abstractions of groups generated by reflections in a vector space [Cox34]. The present work lays out how a study of geometric and combinatorial properties of Coxeter groups contributed to the comprehension of the two open problems. Furthermore, this thesis presents some progress in proving the first problem, and an application of the approach introduced in this thesis for the second problem.

Open Problem (Lattice for infinite Coxeter groups, Dyer [Dye11]). Is there, for each infinite Coxeter group, a complete ortholattice that contains the weak order?

In Chapter 2, we study the asymptotical behaviour of roots of infinite Coxeter groups, which is part of a joint work with Christophe Hohlweg and Vivien Ripoll [HLR13]. In particular, we show that the directions of roots tend to the isotropic cone of the geometric representation of the root system. Moreover, using this framework, this thesis presents a proof that there is a complete ortholattice structure enclosing the weak order of infinite Coxeter groups of rank at most 3.

Open Problem (Existence of multiassociahedra, Jonsson [Jon05]). Let k be an integer such that k >= 1. Is there a polytope whose boundary complex corresponds to the simplicial complex of sets of diagonals of a convex polygon not containing k + 1 mutually crossing diagonals?

In Chapter 3 we introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. This family generalizes the concept of multitriangulations of type A and B to arbitrary finite Coxeter groups. For k = 1, this simplicial complex coincides with the finite cluster complex of the given type. We study combinatorial and geometric properties of multi-cluster complexes. In particular, we show that every spherical subword complex is the link of a face of a multi-cluster complex. This work was realized jointly with Cesar Ceballos and Christian Stump [CLS13]. Finally, this approach allows us to exhibit formulas counting the number of common vertices of permutahedra and generalized associahedra for arbitrary finite Coxeter groups and Coxeter elements.
PDF-Datei von FUDISS_thesis_000000094753
Falls Ihr Browser eine Datei nicht öffnen kann, die Datei zuerst herunterladen und dann öffnen.
SeitenzahlXV, 103 S.
Fachbereich/EinrichtungFB Mathematik und Informatik
Rechte Nutzungsbedingungen
Tag der Disputation08.07.2013
Erstellt am25.07.2013 - 12:02:05
Letzte Änderung26.07.2013 - 05:43:01
Statische URLhttp://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094753