Objekt-Metadaten

Cascades of heteroclinic connections in hyperbolic balance laws
Ehrt, Julia Michael

HaupttitelCascades of heteroclinic connections in hyperbolic balance laws
TitelvarianteKaskaden heterokliner Verbindungen in hyperbolischen Gleichgewichtssätzen
AutorEhrt, Julia Michael
Geburtsort: Villingen
GutachterProf. Dr. Bernold Fiedler
weitere GutachterProf. Dr. Arjen Doelman
Freie Schlagwörterdissipative PDEs; hyperbolic balance laws; vicous balance laws; global attractors
DDC510 Mathematik
ZusammenfassungThe Dissertation investigates the relation between global attractors of hyperbolic balance laws and viscous balance laws on the circle. Hence it is thematically located at the crossroads of hyperbolic and parabolic partial differential equations with one-dimensional space variable and periodic boundary conditions given by:
u_t + [f(u)]_x = g(u) (H)
and
u_t + [f(u)]_x = eu_xx + g(u). (P)


The results of the work can be split into two areas: The description of the global attractor of equation (H) and the persistence of solutions on the global attractor of (P) when e vanishes.

The key idea of the work is the introduction of finite dimensional sub-attractors. This tool allows to overcome several difficulties in the description of the global attractor of equation (H) and closes one of the last remaining gaps in its complete description: Theorem 2.6.1 yields a complete parameterization of all finite dimensional sub-attractors in the hyperbolic setting.

The second main result corrects a result on the persistence of heteroclinic connections by Fan and Hale [FH95] for the case e-->0 (Connection Lemma 3.2.8). The Cascading Theorem 3.2.9 then yields convergence of heteroclinic connections to a cascade of heteroclinics in case of non-persistence.

In addition to the introduction and conclusions, the work consists of three chapters:

Chapter 2 gives a self contained overview about what is known for global attractors for both equations and concludes with the result on the parameterizations of the sub-attractors of the hyperbolic equation (H).

Chapter 3 is exclusively concerned with the question of persistence. The two main results on persistence (the Connection Lemma and the Cascading Theorem) are stated and proved.

Chapter 4 concludes with geometrical investigations of persisting and non-persisting heteroclinic connections for e-->0 for some low dimensional sub-attractor cases. Not all results are rigorous in this chapter.
Dokumente
pdf-Datei
Falls Ihr Browser eine Datei nicht öffnen kann, die Datei zuerst herunterladen und dann öffnen.
 
Seitenzahl85 S.
Fachbereich/EinrichtungFB Mathematik und Informatik
Erscheinungsjahr2010
Dokumententyp/-SammlungenDissertation
Medientyp/FormatText
SpracheEnglisch
Rechte Nutzungsbedingungen
Anmerkungen des AutorsZugl. erschienen als: Report / Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V. ; 27
Tag der Disputation17.11.2009
Erstellt am25.02.2010 - 10:59:28
Letzte Änderung26.02.2010 - 10:10:46
 
Statische URLhttp://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000015791
URNurn:nbn:de:kobv:188-fudissthesis000000015791-0
Zugriffsstatistik
E-Mail-Adressejulia.ehrt@freenet.de