Objekt-Metadaten

Quantum Optimal Control of Bond Selective Separation of Ligands from Organometallic Molecules
Ambrosek, David Hunter

HaupttitelQuantum Optimal Control of Bond Selective Separation of Ligands from Organometallic Molecules
TitelvarianteQuanten-optimierte Steuerung selektiver Liganden-Abspaltung von Organometall-Komplexen
AutorAmbrosek, David Hunter
Geburtsort: Idaho Falls, ID, USA
GutachterProfessor Dr. Jörn Manz
weitere GutachterPD Dr. Leticia González
Freie SchlagwörterOptimal Control Theory, Organometallic Chemistry, Quantum Dynamics, Nonresonant Multiphoton Transitions
DDC540 Chemie und zugeordnete Wissenschaften
Zusammenfassung

Quantum optimal control mechanisms are investigated for the selective metal-ligand dissociation of two organometallic molecules: tetracarbonylmethylcobalt CH3Co(CO)4 and tricarbonylcyclopentadienylmanganese CpMn(CO)3.

A comparative study of the electronic structure of RCo(CO)4 (R= CH3, H) complexes at the equilibrium and asymptotic geometry, which describes the dissociation of the axial ligands, is made. From this study, the five lowest-lying electronic states, corresponding to the ground state, two metal-to-sigma-bond charge transfer (MSBCT) states, and two metal-to-ligand charge transfer (MLCT) states are correlated, and the two-dimensional potential energy surfaces for these states are calculated. Quantum dynamic simulations for both complexes are performed. The autocorrelation function is recorded for both systems and is Fourier transformed to obtain theoretical absorption spectra which are discussed. The quantum dynamics occurring on the unbound MSBCT states for the hydrido complex indicate a pure dissociation of the hydrogen ligand whereas the dynamics for the methyl cobalt complex indicate a simultaneous breakage of both axial ligands. A pump-dump type of control mechanism is employed to investigate the possible single CO or CH3 ligand dissociation from the CH3 Co(CO)3 complex. Selective single Co-CH3 bond dissociation is achieved.

The theory of nonresonant multiphoton transitions (NMT) in the field of femtosecond spectroscopy is presented in a nonperturbative approach. The outcome of this approach is an effective time-dependent Schrödinger equation. Furthermore, the theory of NMT is implemented for the first time into standard optimal control theory (OCT). The organometallic molecule, CpMn(CO)3, is used as the model system for subsequent control experiments. The extention of NMT to OCT is exemplified using an electronic two-level system of CpMn(CO)3. Several control tasks are achieved via nonresonant two- and three-photon transitions.

Dokumente
FUDISS_derivate_000000003250
Falls Ihr Browser eine Datei nicht öffnen kann, die Datei zuerst herunterladen und dann öffnen.
 
Fachbereich/EinrichtungFB Biologie, Chemie, Pharmazie
Erscheinungsjahr2007
Dokumententyp/-SammlungenDissertation
Medientyp/FormatText
SpracheEnglisch
RechteNutzungsbedingungen
Anmerkungen des AutorsGleichzeitig erschienen im Verl. dissertation.de, ISBN 978-3-86624-289-9
Tag der Disputation09.03.2007
Erstellt am23.08.2007 - 00:00:00
Letzte Änderung19.02.2010 - 14:32:42
 
Alte Darwin URLhttp://www.diss.fu-berlin.de/2007/587/
Statische URLhttp://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003250
URNurn:nbn:de:kobv:188-fudissthesis000000003250-6
Zugriffsstatistik